Метод скользящей средней в Microsoft Excel - TurboComputer.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Метод скользящей средней в Microsoft Excel

Разработка прогноза с помощью метода скользящей средней. Пример решения задачи

Экстраполяция – это метод научного исследования, который основан на распространении прошлых и настоящих тенденций, закономерностей, связей на будущее развитие объекта прогнозирования. К методам экстраполяции относятся метод скользящей средней, метод экспоненциального сглаживания, метод наименьших квадратов.

Метод скользящих средних является одним из широко известных методов сглаживания временных рядов. Применяя этот метод, можно элиминировать случайные колебания и получить значения, соответствующие влиянию главных факторов.

Сглаживание с помощью скользящих средних основано на том, что в средних величинах взаимно погашаются случайные отклонения. Это происходит вследствие замены первоначальных уровней временного ряда средней арифметической величиной внутри выбранного интервала времени. Полученное значение относится к середине выбранного интервала времени (периода).

Затем период сдвигается на одно наблюдение, и расчет средней повторяется. При этом периоды определения средней берутся все время одинаковыми. Таким образом, в каждом рассматриваемом случае средняя центрирована, т.е. отнесена к серединной точке интервала сглаживания и представляет собой уровень для этой точки.

При сглаживании временного ряда скользящими средними в расчетах участвуют все уровни ряда. Чем шире интервал сглаживания, тем более плавным получается тренд. Сглаженный ряд короче первоначального на (n–1) наблюдений, где n – величина интервала сглаживания.

При больших значениях n колеблемость сглаженного ряда значительно снижается. Одновременно заметно сокращается количество наблюдений, что создает трудности.

Выбор интервала сглаживания зависит от целей исследования. При этом следует руководствоваться тем, в какой период времени происходит действие, а следовательно, и устранение влияния случайных факторов.

Данный метод используется при краткосрочном прогнозировании. Его рабочая формула:

где t + 1 – прогнозный период; t – период, предшествующий прогнозному периоду (год, месяц и т.д.); Уt+1 – прогнозируемый показатель; mt-1 – скользящая средняя за два периода до прогнозного; n – число уровней, входящих в интервал сглаживания; Уt – фактическое значение исследуемого явления за предшествующий период; Уt-1 – фактическое значение исследуемого явления за два периода, предшествующих прогнозному.

Пример применения метода скользящей средней для разработки прогноза

Задача. Имеются данные, характеризующие уровень безработицы в регионе, %

ЯнварьФевральМартАпрельМайИюньИюльАвгустСентябрьОктябрь
2,992,662,632,562,402,221,971,721,561,42
  • Постройте прогноз уровня безработицы в регионе на ноябрь, декабрь, январь месяцы, используя методы: скользящей средней, экспоненциального сглаживания, наименьших квадратов.
  • Рассчитайте ошибки полученных прогнозов при использовании каждого метода.
  • Сравните полученные результаты, сделайте выводы.

Решение методом скользящей средней

Для расчета прогнозного значения методом скользящей средней необходимо:

1. Определить величину интервала сглаживания, например равную 3 (n = 3).

2. Рассчитать скользящую среднюю для первых трех периодов
m фев = (Уянв + Уфев + У март)/ 3 = (2,99+2,66+2,63)/3 = 2,76
Полученное значение заносим в таблицу в средину взятого периода.
Далее рассчитываем m для следующих трех периодов февраль, март, апрель.
m март = (Уфев + Умарт + Уапр)/ 3 = (2,66+2,63+2,56)/3 = 2,62
Далее по аналогии рассчитываем m для каждых трех рядом стоящих периодов и результаты заносим в таблицу.

3. Рассчитав скользящую среднюю для всех периодов, строим прогноз на ноябрь по формуле:

где t + 1 – прогнозный период; t – период, предшествующий прогнозному периоду (год, месяц и т.д.); Уt+1 – прогнозируемый показатель; mt-1 – скользящая средняя за два периода до прогнозного; n – число уровней, входящих в интервал сглаживания; Уt – фактическое значение исследуемого явления за предшествующий период; Уt-1 – фактическое значение исследуемого явления за два периода, предшествующих прогнозному.

У ноябрь = 1,57 + 1/3 (1,42 – 1,56) = 1,57 – 0,05 = 1,52
Определяем скользящую среднюю m для октября.
m = (1,56+1,42+1,52) /3 = 1,5
Строим прогноз на декабрь.
У декабрь = 1,5 + 1/3 (1,52 – 1,42) = 1,53
Определяем скользящую среднюю m для ноября.
m = (1,42+1,52+1,53) /3 = 1,49
Строим прогноз на январь.
У январь = 1,49 + 1/3 (1,53 – 1,52) = 1,49
Заносим полученный результат в таблицу.

Рассчитываем среднюю относительную ошибку по формуле:

Метод скользящей средней в Microsoft Excel

Среднее скользящее значение относится к категории аналитических инструментов, которые, как принято говорить, “следуют за тенденцией”. Его назначение состоит в том, чтобы позволить определить время начала новой тенденции, а также предупредить о ее завершении или повороте. Методы скользящего среднего предназначены для отслеживания тенденций непосредственно в процессе их развития, их можно рассматривать как искривленные линии тренда. Однако методы скользящего среднего не предназначены для прогнозирования движений на рынке в том смысле, в котором это позволяет делать графический анализ, поскольку они всегда следуют за динамикой рынка, а не опережают ее. Иначе говоря, эти показатели, например, не прогнозируют динамику цен, а только реагируют на нее. Они всегда следуют за движениями цен на рынке и сигнализируют о начале новой тенденции, но только после того, как она появилась.

Построение скользящего среднего представляет собой специальный метод сглаживания показателей. Действительно, при усреднении ценовых показателей их кривая заметно сглаживается и наблюдать тенденцию развития рынка становится намного проще. Однако уже по самой своей природе скользящее среднее как бы отстает от динамики рынка. Краткосрочное скользящее среднее точнее передает движение цен, чем более продолжительное, т.е. вычисленное для более длинного интервала. Применение краткосрочного скользящего среднего позволяет сократить отставание во времени, однако полностью устранить его при использовании любого метода скользящих средних невозможно.

Простое скользящее среднее, определяемое как среднее арифметическое значение, вычисляется по следующей формуле, при условии что m — нечетное число:

(11.3)

где у, — фактическое значение /-го уровня; m — число уровней, входящих в интервал сглаживания – текущий уровень ряда динамики; i — порядковый номер уровня в интервале сглаживания; р — при нечетном m имеет значение р = (m – 1)/2.

Интервал сглаживания, т.е. число входящих в него уровней m, определяют по следующим правилам. Когда необходимо сгладить незначительные, беспорядочные колебания, интервал сглаживания берут большим, если же требуется сохранить более незначительные колебания и освободиться лишь от периодически повторяющихся выбросов — интервал сглаживания обычно уменьшают.

Метод простого скользящего среднего используется обычно в тех случаях, когда график временного ряда представляет собой прямую линию, поскольку при этом динамика исследуемого явления не искажается.

В том случае, когда тренд ряда имеет явно нелинейный характер и желательно сохранить незначительные колебания в динамике значений, этот метод не используется, так как его применение может привести к значительным искажениям исследуемого процесса. В таких случаях используется взвешенное скользящее среднее или методы экспоненциального сглаживания.

Практика показывает, что метод простого скользящего среднего позволяет выработать объективную стратегию и четко определенные правила, например, в сфере торговли. Именно поэтому данный метод положен в основу многих компьютерных систем для торговых организаций. Как же можно использовать метод скользящего среднего? Наиболее распространенные способы применения скользящего среднего таковы.

1. Сопоставление значения текущей цены со скользящим средним, используемым в этом случае как индикатор тенденции. Так, если цены находятся выше 65-дневного скользящего среднего, то на рынке имеется промежуточная (краткосрочная) восходящая тенденция. В случае более долгосрочной тенденции цены должны быть выше 40-недельного скользящего среднего.

Читайте также:  Суммирование столбцов в Microsoft Excel

2. Использование скользящего среднего как уровня поддержки или сопротивления. Закрытие цен выше данного скользящего среднего служит “бычьим” сигналом, закрытие ниже его — “медвежьим”.

3. Отслеживание полосы скользящего среднего (другое часто используемое название — конверт). Эта полоса ограничивается двумя параллельными линиями, которые располагаются на определенную процентную величину выше и ниже кривой скользящего среднего. Эти границы могут служить индикаторами уровня поддержки или сопротивления соответственно.

4. Наблюдение за направлением наклона кривой скользящего среднего. Так, если после длительного подъема она выравнивается или поворачивает вниз, это может быть “медвежьим” сигналом.

5. Еще один простой метод наблюдения заключается в построении линий тренда по кривой скользящего среднего. Также иногда может быть целесообразно использование комбинации из двух скользящих средних.

Microsoft Excel располагает функцией Скользящее среднее (Moving Average), которая обычно используется для сглаживания уровней эмпирического временного ряда на основе метода простого скользящего среднего. Для вызова этой функции необходимо выбрать команду меню Tools^Data Analysis (Сервис1*Анализ данных). На экране раскроется окно Data Analysis, в котором следует выбрать значение Moving Average. В результате на экран будет выведено диалоговое окно Moving Average, представленное на рис. 11.1.

В диалоговом окне Скользящее среднее задаются следующие параметры.

1. Input Range (Входные данные) — в это поле вводится диапазон ячеек, содержащих значения исследуемого параметра.

2. Labels in First Row (Метки в первой строке) — данный флажок опции устанавливается в том случае, если первая строка/столбец входного диапазона содержит заголовок. Если заголовок отсутствует, флажок следует сбросить. В этом случае для данных выходного диапазона будут автоматически созданы стандартные названия.

3. Interval (Интервал) — в это поле вводится число уровней m, входящих в интервал сглаживания. По умолчанию v = 3.

4. Output options (Параметры вывода) — в этой группе, помимо указания диапазона ячеек для выходных данных в поле Output Range (Выходной диапазон), можно также потребовать автоматически построить график, для чего нужно установить флажок опции Chart Output (Вывод графика), и рассчитать стандартные погрешности, для чего необходимо установить флажок опции Standart Errors (Стандартные погрешности).

Рассмотрим конкретный пример. Допустим, за указанный период (1999-2002 гг.) необходимо выявить основную тенденцию изменения фактического объема выпуска продукции и характер сезонных колебаний этого показателя. Данные для примера представлены на рис. 11.2. На рис. 11.3 отображены вычисленные с помощью функции Moving Average (Скользящее среднее) значения сглаженных уровней и значения m=3.

Ha puc. 11.4 rpaфически представлены фактические и прогнозируемые значения анализируемого ряда.

Рассчитанные сглаженные уровни не только дают представление об общей тенденции поведения изучаемого ряда, но и может быть также использованы для вычисления индексов сезонности IS , совокупность которых характеризует сезонную кривую исследуемого процесса. Средние индексы сезонности определяются по формуле

где – исходные уровни ряда, – сглаженные уровни ряда, u — число одноименных периодов.

На рис. 11.3 представлены вычисленные значения . Для получения средних индексов сезонности IX выполняется усреднение вычисленных значений , по одноименным кварталам.

Вычисленные показатели являются средними индексами сезонных колебаний объема выпуска продукции по кварталам.

Анализ временных рядов в Excel

Рассмотрим задачу прогнозирования урожайности подсолнечника при наличии данных с 1965 по 2010 г. (за 46 лет), для этого рассмотрим ряд моделей и выберем ту из них, которая дает наименьшую ошибку в 2010 г., хотя можно в качестве критерия отбора выбрать минимальную сумму модулей ошибок точек или минимальную дисперсию для последних /:-точек и т.д. В конечном счете вид лучшего критерия мы узнаем только в 2011 г.

Предполагая, что тенденция изменения урожайности не изменится в ближайшие годы, для прогноза экстраполируем выбранную модель для первых трех—пяти лет после 2010 г. Используя мастер диаграмм, получим график ряда динамики урожайности (рис. 7.2).

Для аналитического выравнивания и прогноза по уравнению прямой У, — а + bt можно использовать в категории «Статистические» следующие функции (причем для отсчета времени перейдем к условным годам t: 1,2. 46) (рис. 7.3):

  • а) ПРЕДСКАЗ (выделим диапазон D2:D52 и в ячейку D2 введем формулу массива: <=ПРЕДСКАЗ(В2:В52;С2:С47;В2:В47)>);
  • б) ТЕНДЕНЦИЯ (выделим диапазон Е48:Е52 и в ячейку Е48 введем формулу массива: <=ТЕНДЕНЦИЯ(С2:С47;В2:В47;В48:В52;1)>);
  • в) ЛИНЕЙН — позволяет получить коэффициенты уравнения регрессии с помощью МНК, которые можно использовать в формуле для выравнивания и прогноза.

Рис. 7.2. Динамика урожайности подсолнечника

Рис. 7.3. Результаты линейной и экспоненциальной экстраполяции

Для аналитического выравнивания по уравнению экспоненты у=Ь*т х (см. рис. 7.3):

  • а) РОСТ (используется для предсказания или выравнивания по экспоненциальной кривой, выделим диапазон F2:F52 и введем формулу массива (=РОСТ(С2:С47;В2:В47;В2:В52;1)>);
  • б) ЛГРФПРИБЛ может использоваться аналогично ЛИНЕЙН. Самый простой способ прогнозирования на основе линейного или

экспоненциального тренда заключается в использовании контекстного меню. Необходимо: 1) выделить диапазон данных; 2) при нажатой правой клавише мыши протащить маркер заполнения на необходимый период прогнозирования; 3) в открывшемся контекстном меню выбрать вид приближения: Линейное, Экспоненциальное, Прогрессия (рис. 7.4).

Рис. 7.4. Контекстное меню для экстраполяции

Замечание. Все приведенные выше формулы можно (даже нужно) вводить не вручную, а используя Мастер функций, категорию Статистические. Так как рассматриваемые выше формулы обрабатывают массивы данных, то после их введения необходимо нажать Ctrl + Shift + Enter.

Важным методом анализа временных рядов в Excel являются диаграммы. Выделим на рис. 7.5 щелчком левой клавиши мыши маркеры наблюдений урожайности подсолнечника по годам; с помощью правой клавиши откроем контекстное меню (см. рис. 7.5) и выберем одну из перечисленных линий трендов (рис. 7.6):

  • — Линейная;
  • — Логарифмическая;
  • — Полиномиальная;
  • — Степенная;
  • — Экспоненциальная;
  • — Линейная фильтрация (Скользящая средняя).

Рис. 7.5. Контекстное меню выделенных точек наблюдений

Рис. 7.6. Диалоговое окно выбора линии тренда

После выбора одного из трендов, например линейного, отметим «показывать уравнение на диаграмме» и «поместить на диаграмму коэффициент достоверности аппроксимации (/С2) (см. рис. 7.6). Можно выбрать название (назвать тренд самостоятельно) или оставить автоматически предлагаемое Excel; для прогноза, согласно выбранной линии тренда на пять лет вперед, выберем соответствующее значение в диалоговом окне. Далее выберем ОК. При выборе других типов линии тренда получим рис. 7.7.

Рассмотрим другие типы моделей. Прогноз по уравнению третьей степени можно получить, используя рис. 7.7: у = 0,0019х 3 — 11,025х 2 + + 21 886х — Е + 07, где Т — год. Но лучше (так как погрешность расчетов меньше) у — 0,0019/ 3 — 0,1176/ 2 + 1,7489/+ 18,624, где /— порядковый номер года (для прогноза на 2011—2015 гг. / = 47. 51).

Выравнивание и прогноз по СС — скользящим средним — проведем с использованием пакета анализа (инструмент «Скользящее среднее»).

Взвешенную скользящую среднюю (ВСС) для пяти точек определим для полинома 3 степени (модуль 4) по формуле

Рис. 7.7. Линии тренда

Для прогнозирования и определения последних двух точек, которые нельзя получить с использованием ВСС, с помощью контекстного меню можно определить уравнение полинома третьей степени по последним пяти точкам (предварительно изобразив их на отдельной диаграмме).

В качестве модели прогноза целесообразно выбрать модель, имеющую наименьшую ошибку в последней точке (у нас это модель третьей степени и 11-летней скользящей средней), исходя из предположения о сохранении тенденции в дальнейшем.

Проверим автокорреляцию временного ряда (корреляцию между соседними значениями ряда, т.е. определим, влияют ли предыдущие значения на последующие). Для этого, расположим рядом пять столбцов урожайности, сдвинутых каждый относительно предыдущего на единицу (в случае предположения о стационарности ряда смещенные данные каждого столбца можно перенести в его начало).

В результате применения инструмента «Корреляция» (Пакет анализа) получим корреляционную матрицу (табл. 7.7).

Рис. 7.8. Прогнозирование по линиям тренда

Алгоритм прогнозирования объёма продаж в MS Excel

На сегодняшний день наука достаточно далеко продвинулась в разработке технологий прогнозирования. Специалистам хорошо известны методы нейросетевого прогнозирования, нечёткой логики и т.п. Разработаны соответствующие программные пакеты, но на практике они, к сожалению, не всегда доступны рядовому пользователю, а в то же время многие из этих проблем можно достаточно успешно решать, используя методы исследования операций, в частности имитационное моделирование, теорию игр, регрессионный и трендовый анализ, реализуя эти алгоритмы в широко известном и распространённом пакете прикладных программ MS Excel.

В данной статье представлен один из возможных алгоритмов построения прогноза объёма реализации для продуктов с сезонным характером продаж. Сразу следует отметить, что перечень таких товаров гораздо шире, чем это кажется. Дело в том, что понятие “сезон” в прогнозировании применим к любым систематическим колебаниям, например, если речь идёт об изучении товарооборота в течение недели под термином “сезон” понимается один день. Кроме того, цикл колебаний может существенно отличаться (как в большую, так и в меньшую сторону) от величины один год. И если удаётся выявить величину цикла этих колебаний, то такой временной ряд можно использовать для прогнозирования с использованием аддитивных и мультипликативных моделей.

Аддитивную модель прогнозирования можно представить в виде формулы:

где: F – прогнозируемое значение; Т – тренд; S – сезонная компонента; Е – ошибка прогноза.

Применение мультипликативных моделей обусловлено тем, что в некоторых временных рядах значение сезонной компоненты представляет собой определенную долю трендового значения. Эти модели можно представить формулой:

На практике отличить аддитивную модель от мультипликативной можно по величине сезонной вариации. Аддитивной модели присуща практически постоянная сезонная вариация, тогда как у мультипликативной она возрастает или убывает, графически это выражается в изменении амплитуды колебания сезонного фактора, как это показано на рисунке 1.

Рис. 1. Аддитивная и мультипликативные модели прогнозирования.

Алгоритм построения прогнозной модели

Для прогнозирования объема продаж, имеющего сезонный характер, предлагается следующий алгоритм построения прогнозной модели:

1.Определяется тренд, наилучшим образом аппроксимирующий фактические данные. Существенным моментом при этом является предложение использовать полиномиальный тренд, что позволяет сократить ошибку прогнозной модели.

2 .Вычитая из фактических значений объёмов продаж значения тренда, определяют величины сезонной компоненты и корректируют таким образом, чтобы их сумма была равна нулю.

3.Рассчитываются ошибки модели как разности между фактическими значениями и значениями модели .

4.Строится модель прогнозирования:

где:
F – прогнозируемое значение;
Т – тренд;
S – сезонная компонента;
Е – ошибка модели.

5.На основе модели строится окончательный прогноз объёма продаж. Для этого предлагается использовать методы экспоненциального сглаживания, что позволяет учесть возможное будущее изменение экономических тенденций, на основе которых построена трендовая модель. Сущность данной поправки заключается в том, что она нивелирует недостаток адаптивных моделей, а именно, позволяет быстро учесть наметившиеся новые экономические тенденции.

F пр t = a F ф t-1 + (1-а) F м t

где:
F пр t – прогнозное значение объёма продаж;
F ф t- 1 – фактическое значение объёма продаж в предыдущем году;
F м t – значение модели;
а – константа сглаживания

Практическая реализация данного метода выявила следующие его особенности:

  • для составления прогноза необходимо точно знать величину сезона. Исследования показывают, что множество продуктов имеют сезонный характер, величина сезона при этом может быть различной и колебаться от одной недели до десяти лет и более;
  • применение полиномиального тренда вместо линейного позволяет значительно сократить ошибку модели;
  • при наличии достаточного количества данных метод даёт хорошую аппроксимацию и может быть эффективно использован при прогнозировании объема продаж в инвестиционном проектировании.

Применение алгоритма рассмотрим на следующем примере.

Исходные данные: объёмы реализации продукции за два сезона. В качестве исходной информации для прогнозирования была использована информация об объёмах сбыта мороженого “Пломбир” одной из фирм в Нижнем Новгороде. Данная статистика характеризуется тем, что значения объёма продаж имеют выраженный сезонный характер с возрастающим трендом. Исходная информация представлена в табл. 1.

Таблица 1.
Фактические объёмы реализации продукции

Метод скользящей средней в Microsoft Excel. Метод скользящей средней в Excel (Эксель)

Практическое моделирование экономических ситуаций подразумевает разработку прогнозов. С помощью средств Excel можно реализовать такие эффективные способы прогнозирования, как: экспоненциальное сглаживание, построение регрессий, скользящее среднее. Рассмотрим подробнее использование метода скользящего среднего.

Использование скользящих средних в Excel

Метод скользящей средней – один из эмпирических методов для сглаживания и прогнозирования временных рядов. Суть: абсолютные значения ряда динамики меняются на средние арифметические значения в определенные интервалы. Выбор интервалов осуществляется способом скольжения: первые уровни постепенно убираются, последующие – включаются. В результате получается сглаженный динамический ряд значений, позволяющий четко проследить тенденцию изменений исследуемого параметра.

Временной ряд – это множество значений X и Y, связанных между собой. Х – интервалы времени, постоянная переменная. Y – характеристика исследуемого явления (цена, например, действующая в определенный период времени), зависимая переменная. С помощью скользящего среднего можно выявить характер изменений значения Y во времени и спрогнозировать данный параметр в будущем. Метод действует тогда, когда для значений четко прослеживается тенденция в динамике.

Например, нужно спрогнозировать продажи на ноябрь. Исследователь выбирает количество предыдущих месяцев для анализа (оптимальное число m членов скользящего среднего). Прогнозом на ноябрь будет среднее значение параметров за m предыдущих месяца.

Задача. Проанализировать выручку предприятия за 11 месяцев и составить прогноз на 12 месяц.

Сформируем сглаженные временные ряды методом скользящего среднего посредством функции СРЗНАЧ. Найдем средние отклонения сглаженных временных рядов от заданного временного ряда.


Средние квадратичные отклонения:

При расчете отклонений брали одинаковое число наблюдений. Это необходимо для того, чтобы провести сравнительный анализ погрешностей.

После сопоставления таблиц с отклонениями стало видно, что для составления прогноза по методу скользящей средней в Excel о тенденции изменения выручки предприятия предпочтительнее модель двухмесячного скользящего среднего. У нее минимальные ошибки прогнозирования (в сравнении с трех- и четырехмесячной).

Прогнозное значение выручки на 12 месяц – 9 430 у.е.

Применение надстройки «Пакет анализа»

Для примера возьмем ту же задачу.

На вкладке «Данные» находим команду «Анализ данных». В открывшемся диалоговом окне выбираем «Скользящее среднее»:

Заполняем. Входной интервал – исходные значения временного ряда. Интервал – число месяцев, включаемое в подсчет скользящего среднего. Так как сначала будем строить сглаженный временной ряд по данным двух предыдущих месяцев, в поле вводим цифру 2. Выходной интервал – диапазон ячеек для выведения полученных результатов.

Установив флажок в поле «Стандартные погрешности», мы автоматически добавляем в таблицу столбец со статистической оценкой погрешности.

Точно так же находим скользящее среднее по трем месяцам. Меняется только интервал (3) и выходной диапазон.

Сравнив стандартные погрешности, убеждаемся в том, что модель двухмесячного скользящего среднего больше подходит для сглаживания и прогнозирования. Она имеет меньшие стандартные погрешности. Прогнозное значение выручки на 12 месяц – 9 430 у.е.

Составлять прогнозы по методу скользящего среднего просто и эффективно. Инструмент точно отражает изменения основных параметров предыдущего периода. Но выйти за пределы известных данных нельзя. Поэтому для долгосрочного прогнозирования применяются другие способы.

В бизнесе, как и в любой другой деятельности человек, хочет знать, а что будет дальше. Даже трудно себе представить богатство того счастливца, который с 100% точностью мог бы угадывать будущее. Но, к сожалению (или, же к счастью) дар предвидения встречается крайне редко. НО… стараться хотя бы в общих чертах представить будущую бизнес ситуацию предприниматель просто обязан.

Вначале я хотел написать в одном посте сразу про несколько простых и удобных методик, но пост стал получаться очень большим. И поэтому будет несколько постов посвященных теме прогнозирования. В данном посте мы опишем один из наиболее простых методов прогнозирования с использованием возможностей Excel – метод скользящего среднего.

Чаще всего в практике маркетинговых исследований прогнозируются следующие величины:

  • Объемы продаж
  • Размер и емкость рынка
  • Объемы производства
  • Объемы импорта
  • Динамика цен
  • И проч.

Для прогнозирования, которое мы рассматриваем в данном посте советую придерживаться следующего простого алгоритма:

1. Сбор вторичной информации по проблеме (желательно как количественной, так и качественной). Так, например если Вы прогнозируете размер своего рынка, нужно собрать статистическую информацию по рынку (объемы производства, импорта, динамику цен, объемы продаж и проч.) так и тенденции, проблемы или возможности рынка. Если вы прогнозируете объем продаж, тогда вам нужны данные о продажах за период. Для прогнозирования, чем больше исторических данных вы рассмотрите, тем лучше. Желательно прогнозирование дополнить анализом влияющих на прогнозируемое явление факторов (можно SWOT, PEST анализ или любой другой). Это позволит понимать логику развития, и вы сможете таким образом проверять правдоподобность той или иной модели тренда.

2. Далее желательно проверить количественные данные . Для этого нужно сравнить значения одних и тех же показателей, но полученных из разных источников. Если все сходиться можно «загонять» данные в Excel. Также данные должны соответствовать следующим требованиям:

  • Базовая линия включает в себя результаты наблюдений – начиная с самых ранних и заканчивая последними.
  • Все временные периоды базовой линии имеют одинаковую продолжительность. Не следует смешивать данные, например, за один день со средними трехдневными показателями.
  • Наблюдения фиксируются в один и тот же момент каждого временного периода. Например трафик замеряться должен в одно и то же время.
  • Пропуск данных не допускается. Пропуск даже одного результата наблюдений нежелателен при прогнозировании» поэтому, если в ваших наблюдениях отсутствуют результаты за незначительный отрезок времени, постарайтесь восполнить их хотя бы приблизительными данными.

3. Проверив данные, можно применять различные методики прогнозирования . Начать я бы хотел с самого простого метода – МЕТОДА СКОЛЬЗЯЩЕГО СРЕДНЕГО

МЕТОД СКОЛЬЗЯЩЕГО СРЕДНЕГО

Метод скользящего среднего применять достаточно несложно, однако он слишком прост для построения точного прогноза. При использовании этого метода прогноз любого периода представляет собой не что иное, как получение среднего показателя по нескольким предыдущим наблюдениям временного ряда. Например, если вы выбрали скользящее среднее за три месяца, прогнозом на май будет среднее значение показателей за февраль, март и апрель. Выбрав в качестве метода прогнозирования скользящее среднее за четыре месяца, вы сможете оценить майский показатель как среднее значение показателей за январь, февраль, март и апрель.

Как правило, прогноз с применением скользящего среднего рассматривается как прогноз на период, непосредственно следующий за периодом наблюдения. Вместе с этим такой прогноз применим, когда исследуемое явление развивается последовательно, т.е. имеются определенные тенденции, и кривая значений не скачет по диаграмме как угорелая.

Чтобы определить, сколько наблюдений желательно включить в скользящее среднее, нужно исходить из предыдущего опыта и имеющейся информации о наборе данных. Необходимо выдерживать равновесие между повышенным откликом скользящего среднего на несколько самых свежих наблюдений и большой изменчивостью этого среднего.

Итак, как это делать в Excel

1. Допустим, что у Вас есть объемы месячных продаж за последние 29 месяцев. И вы хотите определить, какой объем продаж будет в 30 месяце. Но, если честно, вовсе не обязательно при расчете прогнозных значений оперировать 30 историческими значениями, ведь этот метод будет использовать для расчета среднего лишь несколько последних месяцев. Поэтому для расчета достаточно лишь несколько прошлых месяцев.

2. Приводим эту таблицу в вид понятный Excel, т.е. чтобы все значения были в одном ряду.

3. Далее вводим формулу расчета среднего по предыдущим трем (четырем, пяти? как сами выберите) значениям (см. в ). Наиболее удобно все-таки использовать для расчета последние 3 значения, т.к. если учитывать больше, данные будут чересчур усредняться, если меньше – не будут точными.

4. Используя функцию автозаполнения для всех последующих значений вплоть до 30, прогнозного месяца. Таким образом, функция рассчитает прогноз на июнь 2010 г. Согласно прогнозным значениям в июне продажи составят около 408 единиц товара. Но обратите внимание, что если тенденция падения постоянна, как в нашем примере, расчет прогноза по средней будет немного завышенным, или будет как бы «отставать» от реальных значений.

Мы рассмотрели одну из самых простых методик прогнозирования – метод скользящего среднего. В следующих постах мы рассмотрим другие, более точные и сложные методики. Надеюсь, мой пост будет Вам полезен.

Цель работы : Приобрести навыки решения задач частотного анализа с помощью функции рабочего листа анализа MS Excel .

Краткая теория

При анализе экономических показателей часто возникает вопрос, как часто встречаются показатели в заданных интервалах значений.

Функция ЧАСТОТА рабочего листа анализа MS Excel относится к категории статистических функций и возвращает распределение частот в виде вертикального массива. Для данного множества значений и заданного множества карманов (интервалов) частотное распределение подсчитывает, сколько значений попадает в каждый интервал.

В качестве массива данных может быть одномерный или двумерный массив (например, A 4: D 15).

Синтаксис: ЧАСТОТА (массив_данных; массив_карманов)

Для частотного анализа можно использовать команду Сервис/Анализ данных. Анализ данных является одной из надстроек Excel . Если в меню отсутствует эта команда, то следует выполнить команду Сервис/ Надстройки и установить соответствующий флажок в окне Надстройки .

С помощью функции Частота для выборки множества сумм заказов () введите в диапазон подсчитайте, сколько значений попадают в заданные интервалы значений. Например, от 0 до 1000, от 1001 до 1500, от 1501 до 2000, от 2001 до 2500, свыше 2500.

Ссылка на основную публикацию
Adblock
detector