Определение множественного коэффициента корреляции в MS Excel - TurboComputer.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Определение множественного коэффициента корреляции в MS Excel

Exceltip

Блог о программе Microsoft Excel: приемы, хитрости, секреты, трюки

Как рассчитать коэффициент корреляции в Excel

В сегодняшней статье речь пойдет о том, как переменные могут быть связаны друг с другом. С помощью корреляции мы сможем определить, существует ли связь между первой и второй переменной. Надеюсь, это занятие покажется вам не менее увлекательным, чем предыдущие!

Корреляция измеряет мощность и направление связи между x и y. На рисунке представлены различные типы корреляции в виде графиков рассеяния упорядоченных пар (x, y). По традиции переменная х размещается на горизонтальной оси, а y — на вертикальной.

График А являет собой пример положительной линейной корреляции: при увеличении х также увеличивается у, причем линейно. График В показывает нам пример отрицательной линейной корреляции, на котором при увеличении х у линейно уменьшается. На графике С мы видим отсутствие корреляции между х и у. Эти переменные никоим образом не влияют друг на друга.

Наконец, график D — это пример нелинейных отношений между переменными. По мере увеличения х у сначала уменьшается, потом меняет направление и увеличивается.

Оставшаяся часть статьи посвящена линейным взаимосвязям между зависимой и независимой переменными.

Коэффициент корреляции

Коэффициент корреляции, r, предоставляет нам как силу, так и направление связи между независимой и зависимой переменными. Значения r находятся в диапазоне между — 1.0 и + 1.0. Когда r имеет положительное значение, связь между х и у является положительной (график A на рисунке), а когда значение r отрицательно, связь также отрицательна (график В). Коэффициент корреляции, близкий к нулевому значению, свидетельствует о том, что между х и у связи не существует график С).

Сила связи между х и у определяется близостью коэффициента корреляции к — 1.0 или +- 1.0. Изучите следующий рисунок.

График A показывает идеальную положительную корреляцию между х и у при r = + 1.0. График В — идеальная отрицательная корреляция между х и у при r = — 1.0. Графики С и D — примеры более слабых связей между зависимой и независимой переменными.

Коэффициент корреляции, r, определяет, как силу, так и направление связи между зависимой и независимой переменными. Значения r находятся в диапазоне от — 1.0 (сильная отрицательная связь) до + 1.0 (сильная положительная связь). При r= 0 между переменными х и у нет никакой связи.

Мы можем вычислить фактический коэффициент корреляции с помощью следующего уравнения:

Ну и ну! Я знаю, что выглядит это уравнение как страшное нагромождение непонятных символов, но прежде чем ударяться в панику, давайте применим к нему пример с экзаменационной оценкой. Допустим, я хочу определить, существует ли связь между количеством часов, посвященных студентом изучению статистики, и финальной экзаменационной оценкой. Таблица, представленная ниже, поможет нам разбить это уравнение на несколько несложных вычислений и сделать их более управляемыми.

Как видите, между числом часов, посвященных изучению предмета, и экзаменационной оценкой существует весьма сильная положительная корреляция. Преподаватели будут весьма рады узнать об этом.

Какова выгода устанавливать связь между подобными переменными? Отличный вопрос. Если обнаруживается, что связь существует, мы можем предугадать экзаменационные результаты на основе определенного количества часов, посвященных изучению предмета. Проще говоря, чем сильнее связь, тем точнее будет наше предсказание.

Использование Excel для вычисления коэффициентов корреляции

Я уверен, что, взглянув на эти ужасные вычисления коэффициентов корреляции, вы испытаете истинную радость, узнав, что программа Excel может выполнить за вас всю эту работу с помощью функции КОРРЕЛ со следующими характеристиками:

КОРРЕЛ (массив 1; массив 2),

массив 1 = диапазон данных для первой переменной,

массив 2 = диапазон данных для второй переменной.

Например, на рисунке показана функция КОРРЕЛ, используемая при вычислении коэффициента корреляции для примера с экзаменационной оценкой.

Вам также могут быть интересны следующие статьи

32 комментария

Большое спасибо за простой и внятный а также общедоступный способ разжевывания информации. Теперь наконец-то обработаю в диссертации на вашем примере свою корреляцию. Побольше бы таких статей. Автору Большой Респект и Махталитет!

Согласен, всё описал доступно и по теме. То, что искал. Мне нужно было показать зависимость продаж магазина от погоды. Всё получилось и вполне логично.
Надо посмотреть и др. статьи, надеюсь найду ещё что-то полезное.
Спасибо.

А если массивов не 2, целых 7, тогда как посчитать?

Увы, в таких сложных расчетах я не силен. Возможно, нам поможет кто-нибудь из читателей

Тогда воспользуйтесь формулой Данные->Анализ Данных->выбираете корреляция

Да, интересный вопрос! Что будет если переменных хотя бы 3! ))

Есть все-таки вопрос: в приведенном примере можно ли сказать, что один дополнительный час улучшает оценку на 0,86 пункта?

Не совсем понял, из какого утверждения выходит данный вывод. Чтобы узнать, как изменится оценка, при изменении часов, потраченных на изучение предмета, и при той же корреляции, необходимо воспользоваться методом наименьших квадратов, который я описывал в одном из предыдущих примеров

Огромное спасибо за понятное изложение!!

По формуле я посчитала, все понятно. Но через Excel не получается. Поясните подробнее

Резеда, опишите, подробнее, что вы делаете и что у вас не получается

Подскажите,пожалуйста,а как по значению корреляции построить такой график,и можно ли его получить,если переменная непараметрическая(да-1,0-нет)?

Анна, по одному значению корреляции такой график не построить, нужны исходные данные, из которого вы ее получили. Для непараметрических данных график построить можно, но он будет не наглядным

Высчитывать ранговую или порядкову корреляцию типа 121211112211/111221122121111 и по всем факторам выходят понятные значения, и лишь при сравнении 2х определенных массивов постоянно выдает результат 2.26…..Е-17 что это значит?

результат 2.26…..Е-17 что это значит?
я думаю, что это равно 2.26 умножить на 10 в минус 17ой степени, т.е. ну очень маленькое число корреляции и эти два массива не связаны..

Добрый день!
Обрабатываю экспериментальные данные, в Excel, выполнена аппроксимация графика. Получены уравнения. Не могу проверить на адекватность полученные уравнения (логарифмические, полиномиальные) с линейными получилось. А вот у остальных не знаю как ввести данные.
Кто нибудь подскажет, как это выполнить?
Где можно посмотреть алгоритм ввода?
Буду очень рада вашей помощи.

отличная статья! как раз для таких чайников, как я!) Спасибо огромное! но есть вопрос. можно ли рассчитать значения одного из параметров, если известны значения второго и коэффициент корреляции. Т.е. обратная задачка, по сути)

Приведенная выше формула расчета коэффициента Пирсона, показывает насколько трудоемок этот процесс если выполнять его вручную. Использование возможностей Excell ускоряет процесс нахождения коэффициента в разы.

Подскажите, как использовать корреляцию для 3 и более переменных ?

В Эксел нет формулы расчета кратной корреляции.
Для 3 или более переменных нужно рассчитывать их попарно.
Или использовать кратную (многомерную) корреляцию: произведение усредненных массивов (данные минус среднее значение), деленное на кратную степень произведения дисперсий массивов. То есть при трех массивах вычисляете дисперсии каждого массива, перемножаете их и вычисляете КУБИЧЕСКИй корень (в знаменателе). При 5 массивах — произведение 5 массивов (центрированных — с вычитанием среднего) деленное корень пятой степени из произведения 5 дисперсий массивов

Проще вычислить сумму центрированных произведений переменных и разделить на произведение среднеквадратических отклонений переменных

Комментариев, подобных моему тут, конечно, уже много, но всё-же!
Спасибо за столь доступное и простое описание! Теперь действительно понятно стало!

Спасибо, очень понятно.
Вы приводите в качестве примера расчет корреляции по Персонал, т.е для количестве них переменных (напр. потраченные часы и оценка). Подскажите, а где в Excel функция ANOVA или MANOVA — расчет корреляция ной взаимосвязи между качественным и количестве ними переменными?

Читайте также:  Трансформация первой буквы из строчной в заглавную в Microsoft Excel

Добрый день! Как рассчитать корреляцию в еxcele я поняла. Несколько уточняющих вопросов. Во-первых, это рассчитывается ведь кор. Пирсона? И второе. В калькуляторах, рассчитывающих кор. Пирсона, к значению корреляции указывается еще и «p» (обычно p0,05 или 0,01), а в еxcele он какой? И третье. Если формула везде расчета Пирсона одна, то почему в разных калькуляторах, в том числе, и в сравнении с расчетами в еxcele, получаются разные результаты? По поводу «р» — еще просьба: я слабо дружу с матимаиткой и не дружу со статистикой вообще. Можете ли мне объяснить доступным языком про это р?

Расчёт корреляционного коэффициента предполагает последовательное выполнение ряда математических операций. Приведенная выше формула расчета коэффициента Пирсона, показывает насколько трудоемок этот процесс если выполнять его вручную. Использование возможностей Excell ускоряет процесс нахождения коэффициента в разы.

Подскажите, пожалуйста, если нужно рассчитать коэфыициент корреляции для выборки Х( -1,95; -4,13, -8; -10; -41,5) и У (-0,22; 1,54; -8,8; -10,8; 8,04; 0,47) . В эксель через КОРРЕЛ не считает.. Вообще при таком разбросе чисел (от отрицательных до положительных) это возможно установить силу связи между Х и У? И как тогда рассчитывать. То что связь мужду Х и У есть это исходные данные, нужно оценить силу связи этой.. Может есть другие идеи?

А у формулы определения коэффициента корреляции есть автор?

Определение множественного коэффициента корреляции в MS Excel

Для определения степени зависимости между несколькими показателями применяется множественные коэффициенты корреляции. Их затем сводят в отдельную таблицу, которая имеет название корреляционной матрицы. Наименованиями строк и столбцов такой матрицы являются названия параметров, зависимость которых друг от друга устанавливается. На пересечении строк и столбцов располагаются соответствующие коэффициенты корреляции. Давайте выясним, как можно провести подобный расчет с помощью инструментов Excel.

Вычисление множественного коэффициента корреляции

Принято следующим образом определять уровень взаимосвязи между различными показателями, в зависимости от коэффициента корреляции:

  • 0 – 0,3 – связь отсутствует;
  • 0,3 – 0,5 – связь слабая;
  • 0,5 – 0,7 – средняя связь;
  • 0,7 – 0,9 – высокая;
  • 0,9 – 1 – очень сильная.

Если корреляционный коэффициент отрицательный, то это значит, что связь параметров обратная.

Для того, чтобы составить корреляционную матрицу в Экселе, используется один инструмент, входящий в пакет «Анализ данных». Он так и называется – «Корреляция». Давайте узнаем, как с помощью него можно вычислить показатели множественной корреляции.

Этап 1: активация пакета анализа

Сразу нужно сказать, что по умолчанию пакет «Анализ данных» отключен. Поэтому, прежде чем приступить к процедуре непосредственного вычисления коэффициентов корреляции, нужно его активировать. К сожалению, далеко не каждый пользователь знает, как это делать. Поэтому мы остановимся на данном вопросе.

  1. Переходим во вкладку «Файл». В левом вертикальном меню окна, которое откроется после этого, щелкаем по пункту «Параметры».

После запуска окна параметров посредством его левого вертикального меню переходим в раздел «Надстройки». Там в самом низу правой части окна располагается поле «Управление». Переставляем переключатель в нём в позицию «Надстройки Excel», если отображен другой параметр. После этого клацаем по кнопке «Перейти…», находящейся справа от указанного поля.

  • Происходит запуск небольшого окошка «Надстройки». Устанавливаем флажок около параметра «Пакет анализа». Затем в правой части окна кликаем по кнопке «OK».
  • После указанного действия пакет инструментов «Анализ данных» будет активирован.

    Этап 2: расчет коэффициента

    Теперь можно переходить непосредственно к расчету множественного коэффициента корреляции. Давайте на примере представленной ниже таблицы показателей производительности труда, фондовооруженности и энерговооруженности на различных предприятиях рассчитаем множественный коэффициент корреляции указанных факторов.

      Перемещаемся во вкладку «Данные». Как видим, на ленте появился новый блок инструментов «Анализ». Клацаем по кнопке «Анализ данных», которая располагается в нём.

    Открывается окошко, которое носит наименование «Анализ данных». Выделяем в списке инструментов, расположенных в нём, наименование «Корреляция». После этого щелкаем по кнопке «OK» в правой части интерфейса окна.

    Открывается окно инструмента «Корреляция». В поле «Входной интервал» следует внести адрес диапазона таблицы, в котором расположены данные по трем изучаемым факторам: энерговооруженность, фондовооруженность и производительность. Можно произвести ручное внесение координат, но легче просто установить курсор в поле и, зажав левую кнопку мыши, выделить соответствующую область таблицы. После этого адрес диапазона будет отображен в поле окна «Корреляция».

    Так как у нас факторы разбиты по столбцам, а не по строкам, то в параметре «Группирование» выставляем переключатель в позицию «По столбцам». Впрочем, он там уже и так установлен по умолчанию. Поэтому остается только проверить правильность его расположения.

    Около пункта «Метки в первой строке» галочку ставить не обязательно. Поэтому мы пропустим данный параметр, так как он не повлияет на общий характер расчета.

    В блоке настроек «Параметр вывода» следует указать, где именно будет располагаться наша корреляционная матрица, в которую выводится результат расчета. Доступны три варианта:

    • Новая книга (другой файл);
    • Новый лист (при желании в специальном поле можно дать ему наименование);
    • Диапазон на текущем листе.

    Давайте выберем последний вариант. Переставляем переключатель в положение «Выходной интервал». В этом случае в соответствующем поле нужно указать адрес диапазона матрицы или хотя бы её верхнюю левую ячейку. Устанавливаем курсор в поле и клацаем по ячейке на листе, которую планируем сделать верхним левым элементом диапазона вывода данных.

    После выполнения всех указанных манипуляций остается только щелкнуть по кнопке «OK» в правой части окошка «Корреляция».

  • После выполнения последнего действия Excel строит матрицу корреляции, заполняя её данными, в указанном пользователем диапазоне.
  • Этап 3: анализ полученного результата

    Теперь давайте разберемся, как понимать тот результат, который мы получили в процессе обработки данных инструментом «Корреляция» в программе Excel.

    Как видим из таблицы, коэффициент корреляции фондовооруженности (Столбец 2) и энерговооруженности (Столбец 1) составляет 0,92, что соответствует очень сильной взаимосвязи. Между производительностью труда (Столбец 3) и энерговооруженностью (Столбец 1) данный показатель равен 0,72, что является высокой степенью зависимости. Коэффициент корреляции между производительностью труда (Столбец 3) и фондовооруженностью (Столбец 2) равен 0,88, что тоже соответствует высокой степени зависимости. Таким образом, можно сказать, что зависимость между всеми изучаемыми факторами прослеживается довольно сильная.

    Как видим, пакет «Анализ данных» в Экселе представляет собой очень удобный и довольно легкий в обращении инструмент для определения множественного коэффициента корреляции. С его же помощью можно производить расчет и обычной корреляции между двумя факторами.

    Функция КОРРЕЛ для определения взаимосвязи и корреляции в Excel

    Функция КОРРЕЛ в Excel используется для расчета коэффициента корреляции между для двух исследуемых массивов данных и возвращает соответствующее числовое значение.

    Примеры использования функции КОРРЕЛ в Excel

    Пример 1. В таблице Excel содержатся данные о курсе доллара и средней зарплате сотрудников фирмы на протяжении нескольких лет. Определить взаимосвязь между курсом валюты и средней зарплатой.

    Формула для расчета:

    • B3:B13 – диапазон ячеек, в которых хранятся данные о среднем курсе доллара;
    • C3:C13 – диапазон ячеек со значениями средней зарплаты.

    Полученный результат близок к 1 и свидетельствует о сильной прямой взаимосвязи между исследуемыми величинами. Однако прямо пропорциональной зависимости между ними нет, то есть на увеличение средней зарплаты оказывали влияние и прочие факторы.

    Определение коэффициента корреляции влияния действий на результат

    Пример 2. Два сильных кандидата на руководящий пост воспользовались услугами двух различных пиар-агентств для запуска предвыборной компании, которая длилась 15 дней. Ежедневно проводился соцопрос независимыми исследователями, которые определяли процент поддержки одного и второго кандидата. Респонденты могли отдавать предпочтение первому, второму кандидату или выступать против обоих. Определить, насколько влияла каждая предвыборная кампания на степень поддержки кандидатов, какая из них оказалась более эффективной?

    Читайте также:  Объединение ячеек в программе Excel

    Произведем расчет коэффициентов корреляции с помощью формул:

    • A3:A17 – массив ячеек, содержащий номера дней предвыборной кампании;
    • B3:B17 и C3:C17 – диапазон ячеек, содержащие данные о проценте поддержки первого и второго кандидатов соответственно.

    Как видно, уровень поддержки первого кандидата увеличивался с каждым днем кампании, поэтому коэффициент корреляции в первом случае стремится к единице. На старте кампании второй кандидат имел больший процент поддержки, и это значение на протяжении первых пяти дней демонстрировало положительную динамику изменений. Однако затем уровень поддержки стал снижаться, и к 15-му дню упал ниже начального значения. Отрицательное значение коэффициента корреляции свидетельствует о негативном эффекте кампании. Однако на события могли оказывать влияние различные факторы, например, опубликованные компрометирующие материалы. В связи с этим полагаться только на значение коэффициента корреляции в данном случае нельзя. То есть, коэффициент корреляции не характеризует причинно-наследственную связь.

    Анализ популярности контента по корреляции просмотров и репостов видео

    Пример 3. Владелец канала YouTube использует социальную сеть для рекламы своих роликов. Он заметил, что между числом просмотров и количеством репостов в социальной сети существует некоторая взаимосвязь. Можно ли спрогнозировать виральность контента канала в Excel? Определить целесообразность использования уравнения линейной регрессии для предсказания количества просмотров роликов в зависимости от числа репостов.

    Определим наличие взаимосвязи между двумя параметрами по формуле:

    0,7;ЕСЛИ(КОРРЕЛ(A3:A8;B3:B8)>0,7;”Сильная прямая зависимость”;”Сильная обратная зависимость”);”Слабая зависимость или ее отсутствие”)’ >

    Если модуль коэффициента корреляции больше 0,7, считается рациональным использование функции линейной регрессии (y=ax+b) для описания связи между двумя величинами. В данном случае:

    Построим график зависимости числа просмотров от количества репостов, отобразим линию тренда и ее уравнение:

    Используем данное уравнение для определения количества просмотров при 200, 500 и 1000 репостов:

    Аналогичное уравнение использует функция ПРЕДСКАЗ. То есть, чтобы найти количество просмотров в случае, если было сделано, например, 250 репостов, можно использовать формулу:

    0,7;ПРЕДСКАЗ(D7;B3:B8;A3:A8);”Величины не взаимосвязаны”)’ >

    Коэффициент корреляции – один из множества статистических критериев определения наличия взаимосвязи между двумя рядами значений. Для построения точных статистических моделей рекомендуется использовать дополнительные параметры, такие как коэффициент детерминации, стандартная ошибка и другие.

    Особенности использования функции КОРРЕЛ в Excel

    Функция КОРРЕЛ имеет следующий синтаксис:

    • массив1 – обязательный аргумент, содержащий диапазон ячеек или массив данных, которые характеризуют изменения свойства какого-либо объекта.
    • массив2 – обязательный аргумент (диапазон ячеек либо массив), элементы которого характеризуют изменение свойств второго объекта.

    1. Функция КОРРЕЛ не учитывает в расчетах элементы массива или ячейки из выбранного диапазона, в которых содержатся данные текстового или логического типов. Пустые ячейки также игнорируются. Текстовые представления числовых значений учитываются.
    2. Если необходимо учесть логические ИСТИНА или ЛОЖЬ в качестве числовых значений 1 или 0 соответственно, можно выполнить явное преобразование данных используя двойное отрицание «–».
    3. Размерности массив1 и массив2 или количество ячеек, переданных в качестве этих двух аргументов, должны совпадать. Если аргументы содержат разное количество точек данных, например, =КОРРЕЛ(<1;2;3>;<4;6;8;10>), результатом выполнения функции будет код ошибки #Н/Д.
    4. Если один из аргументов представляет собой пустой массив или массив нулевых значений, функция КОРРЕЛ вернет код ошибки #ДЕЛ/0!. Аналогичный результат выполнения данной функции будет достигнут в случае, если стандартное отклонение распределения величин в одном из массивов (массив1, массив2) равно 0 (нулю).
    5. Функция КОРРЕЛ производит расчет коэффициента корреляции по следующей формуле:

    Примечание 2: Коэффициент корреляции представляет собой количественную характеристику степени взаимосвязи между двумя свойствами объектов. Этот коэффициент может принимать значения из диапазона от -1 до 1, при этом:

    1. Если значение коэффициента приближается к 1 или -1, между двумя исследуемыми свойствами существует сильная прямая или обратная взаимосвязи соответственно.
    2. Если значение коэффициента стремится к 0,5 или -0,5, два свойства слабо прямо или обратно взаимосвязаны друг с другом соответственно.
    3. Если коэффициент корреляции близок к 0 (нулю), между двумя исследуемыми свойствами отсутствует прямая либо обратная взаимосвязи.

    Примечание 3: Для понимания смысла коэффициента корреляции можно привести два простых примера:

    1. При нагреве вещества количество теплоты, содержащееся в нем, будет увеличиваться. То есть, между температурой и количеством теплоты (физическая величина) существует прямая взаимосвязь.
    2. При увеличении стоимости продукции спрос на нее уменьшается. То есть, между ценой и покупательной способностью существует обратная взаимосвязь.

    Что такое коэффициент корреляции и как его использовать в Excel

    Коэффициент корреляции показывает наличие или отсутствие зависимости между различными факторами, выраженными в числовой форме. Этот показатель может принимать значения от -1 до +1. Чем ближе число по модулю к единице, тем сильнее зависимость. При значении коэффициента равном 0 зависимость между двумя величинами отсутствует.

    Выявив корреляционную зависимость, можно прогнозировать поведение одного из показателей, проанализировав поведение другого.

    Вычисление коэффициента посредством мастера функций

    Предположим, что требуется установить связь между затратами на рекламу и объемом продаж какой-либо продукции. Для этого будем использовать коэффициент корреляции в Excel.

    1. Кликнуть по ячейке, в которой должен появиться результат.
    2. Нажать кнопку «Вставить формулу».
    3. В появившемся окне выбрать категорию «Полный алфавитный перечень».
    4. Найти и активировать функцию «КОРРЕЛ».
    5. Кликнуть «ОК».
    6. В открывшемся окне аргументов поставить курсор в поле «Массив 1», выделить первый столбец с данными.
    7. Поставить курсор в поле «Массив 2», выделить второй столбец из таблицы.
    8. Кликнуть «ОК».

    В выделенной ячейке появляется результат вычислений корреляции в Excel.

    Расчёт с помощью пакета анализа

    Прежде чем воспользоваться инструментом корреляционного анализа, его нужно активировать. Для этого необходимо выполнить следующие действия:

    1. Выполнить действия «Файл» — «Сведения» — «Параметры».
    2. В появившемся окне перейти в раздел «Надстройки». В нижней части окна в выпадающем списке выбрать «НадстройкиExcel». Нажать кнопку «Перейти».
    3. В открывшемся окне «Надстройки» следует отметить пункт «Пакет анализа» и нажать «ОК»

    Чтобы воспользоваться пакетом, следует:

    1. На панели задач активировать вкладку «Данные».
    2. Нажать кнопку «Анализ данных».
    3. В новом окне выделить строку «Корреляция» и нажать «ОК». Появится окно с параметрами.
    4. Для выбора входного интервала необходимо установить курсор в соответствующее поле и выделить сразу оба столбца.
    5. Параметр группировки следует отметить «по столбцам». Вывод результатов возможен в указанное место, на новый лист или в новую книгу.
    6. Следует отметить соответствующее поле.

    После указание всех параметров следует нажать «ОК».

    Значение получилось тем же, что и в первом случае.

    Поле корреляции (диаграмма рассеяния)

    Корреляционное поле — это графическое отображение исходных данных. По расположению точек можно определить наличие зависимости и ее характер.

    В редакторе Excel построение выполняется с помощью инструмента «Диаграмма»:

    1. Выделить столбцы с данными.
    2. Кликнуть «Вставка» — «Точечная» — «Точечная с маркерами».

    Результат построения корреляционной матрицы.

    По расположению точек на диаграмме можно сделать вывод о том, что прослеживается сильная положительная корреляционная зависимость между величиной затрат на маркетинг и объемом продаж.

    Для того, чтобы использовать диаграмму в практических целях, можно добавить линию тренда и уравнение. Для этого нужно выполнить следующие действия:

    1. Кликнуть правой кнопкой мыши на любой точке диаграммы.
    2. В контекстном меню выбрать «добавить линию тренда».
    3. Настроить параметры линии тренда (можно оставить по умолчанию).
    4. Нажать кнопку «закрыть».

    Примеры использование корреляционного анализа

    Как уже отмечалось выше, вычислить соотношение можно между любыми числовыми величинами. Обнаруженная высокая корреляция позволяет прогнозировать протекание каких-либо процессов в научных исследованиях, бизнесе, общественной жизни.

    В рассмотренном выше примере была установлена высокая положительная корреляция между затратами на рекламу и объемом продаж определенного вида продукции. Кроме того, была определена формула, связывающая эти два показателя. Это исследование позволяет руководителю предприятия грамотно спланировать затраты на рекламу, с учетом необходимого размера продаж.

    Другие примеры использования коэффициента корреляции:

    • зависимость средней заработной платы от величины областного бюджета;
    • связь между числом репостов в социальных сетях и количеством просмотров видео на YouTube;
    • связь коэффициента интеллекта и длины прыжка с места.

    Редактор электронных таблиц Microsoft Excel является удобным инструментом для вычисления и наглядного представления результатов вычисления коэффициента корреляции.

    Презентация – Расчет корреляционных зависимостей в MS Excel

    Текст этой презентации

    Расчет корреляционных зависимостей в MS Excel
    Подготовила учитель информатики Яценко Е.В.

    Множественная корреляция в MS Excel При большом числе наблюдений, когда коэффициенты корреляции необходимо последовательно вычислять для нескольких выборок, для удобства получаемые коэф-фициенты сводят в таблицы, называемые корреляционными матрицами.

    Корреляционная матрица — это квадратная таблица, в кото­рой на пересечении соответствующих строк и столбцов находятся коэффициент корреляции между соответствующими параметрами.

    В MS Excel для вычисления корреляционных матриц используется процедура Корреляция из пакета Анализ данных. Процедура позволяет получить корреляционную матрицу, содержащую коэффициенты корреляции между различными параметрами.

    Для реализации процедуры необходимо:
    выполнить команду Данные – Анализ данных; 2. в появившемся списке Инструменты анализа выбрать строку Корреляция и нажать кнопку ОК; 3. в появившемся диалоговом окне указать Входной интервал, то есть ввести ссыл­ку на ячейки, содержащие анализируемые данные. Входной интервал должен содержать не менее двух столбцов. 4. в разделе Группировка переключатель установить в соответствии с введенными данными (по столбцам или по строкам); 5. указать выходной интервал, то есть ввести ссылку на ячейку, начиная с которой будут показаны результаты анализа. Размер выходного диапазона будет определен автоматически, и на экран будет выведено сообщение в случае возможного наложения выходного диапазона на исходные данные. Нажать кнопку ОК.

    В выходной диапазон будет выведена корреляционная матрица, в которой на пересечении каждых строки и столбца находится коэффициент корреляции между соответствующими параметрами. Ячейки выходного диапазона, имеющие совпадающие координаты строк и столбцов, содержат значение 1, так как каждый столбец во входном диапазоне полностью коррелирует сам с собой

    Имеются ежемесячные данные наблюдений за состоянием погоды и посещаемостью музеев и парков . Необходимо определить, существует ли взаимосвязь между состоянием погоды и посещаемостью музеев и парков.
    Число ясных дней Количество посетителей музея Количество посетителей парка
    8 495 132
    14 503 348
    20 380 643
    25 305 865
    20 348 743
    15 465 541

    Решение. Для выполнения корреляционного анализа введите в диапазон A1:G3 исходные данные . Затем в меню Сервис выберите пункт Анализ данных и далее укажите строку Корреляция. В появившемся диалоговом окне укажите Входной интервал (А2:С7). Укажите, что данные рассматриваются по столбцам. Укажите выходной диапазон (Е1) и нажмите кнопку ОК.

    Вывод: видно, что корреляция между состоянием погоды и посещаемостью музея равна -0,92, а между состоянием погоды и посещаемостью парка — 0,97, между посещаемостью парка и музея — 0,92. В результате анализа выявлены зависимости: сильная степень обратной линейной взаимосвязи между посещаемостью музея и количеством солнечных дней ; очень сильная прямая связь между посещаемостью парка и состоянием погоды; сильная обратная взаимосвязь между посещаемостью музея и парка .

    Лабораторная работа №5, Парная регрессия и корреляция, MS Excel

    Код роботи: 4353

    Вид роботи: Лабораторна робота

    Предмет: Економічна кібернетика (Экономическая кибернетика)

    Тема: №5, Парная регрессия и корреляция, MS Excel

    Кількість сторінок: 9

    Дата виконання: 2018

    Мова написання: російська

    Ціна: безкоштовно

    По территориям региона приводятся данные:

    Среднедушевой прожиточный минимум в день одного трудоспособного, ден.ед., x

    Среднедневная заработная плата, ден.ед., y

    1. Построить линейное уравнение парной регрессии y по x.

    Для расчета параметров уравнения линейной регрессии строим расчетную таблицу 2.

    По формулам находим параметры регрессии

    Получено уравнение регрессии:

    .

    Параметр регрессии позволяет сделать вывод, что с увеличением среднедушевого прожиточного минимума на 1 ден.ед. среднедневная заработная плата возрастает в среднем на 0,89 ден.ед.

    После нахождения уравнения регрессии заполняем столбцы 7 – 10 таблицы 2.

    2. Рассчитать линейный коэффициент парной корреляции, коэффициент детерминации и среднюю ошибку аппроксимации.

    Тесноту линейной связи оценит коэффициент корреляции:

    Т.к. значение коэффициента корреляции больше 0,7, то это говорит о наличии весьма тесной линейной связи между признаками.

    Это означает, что 67,6% вариации заработной платы (y) объясняется вариацией фактора x – среднедушевого прожиточного минимума.

    Качество модели определяет средняя ошибка аппроксимации:

    Качество построенной модели оценивается как хорошее, так как не превышает 10%.

    3. Оценить статистическую значимость уравнения регрессии в целом и отдельных параметров регрессии и корреляции с помощью -критерия Фишера и t-критерия Стьюдента.

    Оценку статистической значимости уравнения регрессии в целом проведем с помощью F-критерия Фишера. Фактическое значение F-критерия по формуле составит

    Табличное значение критерия при пятипроцентном уровне значимости и степенях свободы k1=1 и k2=12-2=10 составляет Fтабл=4,96. Так как , то уравнение регрессии признается статистически значимым.

    Оценку статистической значимости параметров регрессии и корреляции проведем с помощью t-статистики Стьюдента и путем расчета доверительного интервала каждого из параметров.

    Табличное значение t-критерия для числа степеней свободы df=n-2=12-2=10 и уровня значимости составит tтабл=2,23.

    Определим стандартные ошибки (остаточная дисперсия на одну степень свободы

    Фактические значения t-статистики превосходят табличное значение:

    Поэтому параметры a, b и rxy не случайно отличаются от нуля, а статистически значимы.

    Рассчитаем доверительные интервалы для параметров регрессии a и b. Для этого определим предельную ошибку для каждого показателя:

    Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью параметры a и b, находясь в указанных границах, не принимают нулевых значений, т.е. являются статистически значимыми и существенно отличны от нуля.

    4. Выполнить прогноз заработной платы y при прогнозном значении среднедушевого прожиточного минимума x, составляющем 107% от среднего уровня.

    Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит: ден.ед., тогда индивидуальное прогнозное значение заработной платы составит: ден.ед.

    5. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.

    Ошибка прогноза составит:

    Предельная ошибка прогноза, которая в 95% случаев не будет превышена, составит:

    Доверительный интервал прогноза:

    Выполненный прогноз среднемесячной заработной платы является надежным () и находится в пределах от 140,16 ден.ед. до 185,0 ден.ед.

    6. На одном графике отложить исходные данные и теоретическую прямую.

    7. Проверить вычисления в MS Excel.

    Выбираем Сервис®Анализ данных®Регрессия. Заполняем диалоговое окно ввода данных и параметров вывода. Получаем следующие результаты:

    Фактическое значение F-критерия Фишера:

    Остаточная дисперсия на одну степень свободы:

    Корень квадратный из остаточной дисперсии (стандартная ошибка):

    Стандартные ошибки для параметров регрессии:

    Фактические значения t-критерия Стьюдента:

    Как видим, найдены все рассмотренные выше параметры и характеристики уравнения регрессии, за исключением средней ошибки аппроксимации (значение t-критерия Стьюдента для коэффициента корреляции совпадает с tb). Результаты «ручного счета» от машинного отличаются незначительно (отличия связаны с ошибками округления).

    Ссылка на основную публикацию
    Adblock
    detector