Просмотр списка процессов в Linux - TurboComputer.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Просмотр списка процессов в Linux

Просмотр списка процессов в Linux

Иногда у пользователя появляется надобность отследить список запущенных процессов в операционной системе Linux и узнать максимально детальную информацию о каждом из них или о каком-то конкретно. В ОС присутствуют встроенные средства, позволяющие осуществить поставленную задачу без каких-либо усилий. Каждый такой инструмент ориентирован под своего юзера и открывает для него разные возможности. В рамках этой статьи мы затронем два варианта, которые будут полезны в определенных ситуациях, а вам останется только выбрать наиболее подходящий.

Просматриваем список процессов в Linux

Практически во всех популярных дистрибутивах, основанных на ядре Linux, список процессов открывается и просматривается с помощью одних и тех же команд, инструментов. Поэтому мы не будем сосредотачивать внимание на отдельных сборках, а возьмем за пример последнюю версию Ubuntu. Вам же останется только выполнить предоставленные инструкции, чтобы вся процедура прошла успешно и без трудностей.

Способ 1: Терминал

Бесспорно, классическая консоль операционных систем на Линуксе играет важнейшую роль при взаимодействии с программами, файлами и другими объектами. Все основные манипуляции юзер производит именно через это приложение. Потому с самого начала хотелось бы рассказать о выводе информации именно через «Терминал». Обратим внимание мы лишь на одну команду, однако рассмотрим самые популярные и полезные аргументы.

  1. Для начала запустите консоль, нажав на соответствующий значок в меню или используя комбинацию клавиш Ctrl + Alt + T.

Пропишите команду ps , чтобы просто убедиться в ее работоспособности и ознакомиться с видом показанных данных без применения аргументов.

Как видите, список процессов получился достаточно малым, обычно это не более трех результатов, поэтому стоит уделить время уже упомянутым аргументам.

Предыдущая команда не отображает лидера группы (главный процесс из связки). Если вас интересуют и эти данные, здесь следует прописать ps -d .

Получить большее количество полезной информации можно, просто добавив -f .

Тогда полный список процессов с расширенной информацией будет вызываться через ps -Af . В таблице вы увидите UID — имя пользователя, запустившего процесс, PID — уникальный номер, PPID — номер родительского процесса, C — количество времени нагрузки на ЦП в процентах, когда активен процесс, STIME — время активации, TTY — номер консоли, откуда был совершен запуск, TIME — время работы, CMD — команда, запустившая процесс.

Отдельно хотелось бы затронуть и сортировку. Например, команда ps -FA –sort pcpu позволяет поставить все строки в порядке нагрузки на CPU, а ps -Fe –sort rss — по затрачиваемому объему оперативной памяти.

Выше мы рассказали об основных аргументах команды ps , однако присутствуют еще и другие параметры, например:

  • -H — отображение дерева процессов;
  • -V — вывод версий объектов;
  • -N — выборка всех процессов кроме заданных;
  • -С — отображение только по имени команды.

Для рассмотрения метода просмотра процессов через встроенную консоль мы выбрали именно команду ps , а не top , поскольку вторая ограничена размерами окна и не помещающиеся данные просто игнорируются, оставаясь невыведенными.

Способ 2: Системный монитор

Конечно, метод просмотра нужной информации через консоль является сложным для некоторых пользователей, но он позволяет подробно ознакомиться со всеми важными параметрами и применить необходимые фильтры. Если вы хотите просто просмотреть список запущенных утилит, приложений, а также совершить с ними ряд взаимодействий, вам подойдет встроенное графическое решение «Системный монитор».

Способы запуска этого приложения вы можете узнать в другой нашей статье, перейдя по следующей ссылке, а мы же переходим к выполнению поставленной задачи.

    Запустите «Системный монитор» любым удобным методом, например, через меню.

Сразу же отобразится список процессов. Вы узнаете, сколько они потребляют памяти и ресурсов ЦП, увидите пользователя, запустившего выполнение программы, а также сможете ознакомиться с другой информацией.

Щелкните правой кнопкой мыши на интересующей строке, чтобы перейти в ее свойства.

Здесь отображаются практически все те же данные, которые доступны к получению через «Терминал».

Используйте функцию поиска или сортировки, чтобы найти необходимый процесс.

Обратите внимание и на панель сверху — она позволяет сортировать таблицу по необходимым значениям.

Завершение, остановка или удаление процессов также происходит через это графическое приложение путем нажатия на соответствующие кнопки. Начинающим пользователям такое решение покажется более удобным, чем работа в «Терминале», однако освоение консоли позволит получать искомую информацию не только быстрее, но и с большим количеством деталей.

Работа с процессами в Linux

Список процессов

Вывести на экран список текущих процессов, запущенных пользователем, можно командой:

Чтобы посмотреть список всех процессов с дополнительной информацией, вводим:

Мы увидим, примерно, следующее:

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 661 0.0 0.0 4072 8 tty1 Ss+ Jul03 0:00 /sbin/mingetty
root 662 0.0 0.0 4072 8 tty2 Ss+ Jul03 0:00 /sbin/mingetty
root 16355 0.0 0.0 171636 3308 pts/0 S 15:46 0:00 sudo su
root 16366 0.0 0.0 140896 1556 pts/0 S 15:46 0:00 su
root 16368 0.0 0.0 108316 1944 pts/0 S 15:46 0:00 bash
root 18830 0.0 0.0 110244 1172 pts/0 R+ 16:20 0:00 ps u

  • USER — учетная запись пользователя, от которой запущен процесс.
  • P >КлючОписание-AВсе процессы.-aЗапущенные в текущем терминале, кроме главных системных.-dВсе, кроме главных системных процессов сеанса.-eВсе процессы.fПоказать дерево процессов с родителями.TВсе на конкретном терминале.aВсе, связанные с текущим терминалом и терминалами других пользователей.rСписок только работающих процессов.xОтсоединённые от терминала.uПоказать пользователей, запустивших процесс.

Примеры

Поиск процесса с помощью grep:

ps aux | grep apache

Убить процесс

Останавливаем процесс по его PID:

Если процесс не завершается, убиваем его принудительно:

Остановить все процессы с именем nginx:

Как и в случае с kill, можно это сделать принудительно:

killall -9 nginx

Подробная информация о процессе

Для каждого процесса создается каталог по пути /proc/

, в котором создаются папки и файлы с описанием процесса.

Примеры использования /proc/

Подробный вывод статуса:

Адрес в ячейках оперативной памяти, которые занял процесс:

Команда, которой был запущен процесс:

Символьная ссылка на рабочий каталог процесса:

Символьная ссылка на исполняемый файл, запустивший процесс:

Увидеть ссылки на дескрипторы открытых файлов, которые затрагивает процесс:

Подробное описание на сайте man7.org.

Потребление ресурсов процессами

Для просмотра статистики потребления ресурсов используем утилиту top:

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
21059 root 20 0 157884 2280 1496 R 18,8 0,1 0:00.03 top
1 root 20 0 190996 2964 1652 S 0,0 0,1 6:49.99 systemd
2 root 20 0 0 0 0 S 0,0 0,0 0:01.78 kthreadd
3 root 20 0 0 0 0 S 0,0 0,0 0:24.75 ksoftirqd/0
5 root 0 -20 0 0 0 S 0,0 0,0 0:00.00 kworker/0:0H

  • PID — идентификатор процесса.
  • USER — имя учетной записи, от которой запущен процесс.
  • PR — приоритет процесса.
  • NI — приоритет, выставленной командой nice.
  • VIRT — объем виртуальной памяти, потребляемый процессом.
  • RES — объем используемой оперативной памяти.
  • SHR — количество разделяемой памяти, которое используется процессом.
  • S — состояние процесса.
  • %CPU — процент использования процессорного времени.
  • %MEM — потребление оперативной памяти в процентах.
  • TIME — использование процессорного времени в секундах.
  • COMMAND — команда, которая запустила процесс.

Список процессов Linux

На сайте уже есть несколько статей про процессы Linux, в которых подробно описано как ими управлять или как завершить один или группу процессов, но это еще не все. Чтобы правильно управлять процессами и ориентироваться в них вам нужно научиться анализировать список процессов Linux, понимать что значит каждый пункт и зачем он нужен.

В этой статье мы подробно рассмотрим как посмотреть список процессов, разберем какими бывают процессы, почему так происходит и что с этим делать.

Что такое процесс?

Процесс Linux – это экземпляр программы, запущенный в памяти. Все процессы можно разделить на обычные и фоновые. Более подробно об этом написано в статье управление процессами Linux. Linux – это многопользовательская система, каждый пользователь может запускать одни и те же программы, и даже один пользователь может захотеть запустить несколько экземпляров одной программы, поэтому ядру нужно как-то идентифицировать такие однотипные процессы. Для этого каждому процессу присваивается PID (Proccess Identificator).

Каждый из процессов может находиться в одном из таких состояний:

  • Запуск – процесс либо уже работает, либо готов к работе и ждет, когда ему будет дано процессорное время;
  • Ожидание – процессы в этом состоянии ожидают какого-либо события или освобождения системного ресурса. Ядро делит такие процессы на два типа – те, которые ожидают освобождения аппаратных средств и приостановление с помощью сигнала;
  • Остановлено – обычно, в этом состоянии находятся процессы, которые были остановлены с помощью сигнала;
  • Зомби – это мертвые процессы, они были остановлены и больше не выполняются, но для них есть запись в таблице процессов, возможно, из-за того, что у процесса остались дочерние процессы.

А теперь давайте перейдем ближе к практике и поговорим о том, как узнать запущенные процессы linux.

Список процессов Linux

Самые популярные команды для решения этой задачи – это ps, top и htop. Последние две команды мы уже рассматривали в предыдущих статьях, собственно, они интерактивные и с ними у вас не возникнет проблем. Сейчас же хотелось бы остановиться более детально на ps. Сначала рассмотрим общий синтаксис команды, здесь все очень просто:

$ ps опции

$ ps опции | grep параметр

Во втором варианте мы используем утилиту grep для того, чтобы отобрать нужные нам процессы по определенному критерию. Теперь рассмотрим опции утилиты. Они делятся на два типа – те, которые идут с дефисом Unix и те, которые используются без дефиса – BSD. Лучше пользоваться только опциями Unix, но мы рассмотрим и одни и другие. Заметьте, что при использовании опций BSD, вывод утилиты будет организован в BSD стиле.

  • -A, (a) – выбрать все процессы;
  • -a – выбрать все процессы, кроме фоновых;
  • -d, (g) – выбрать все процессы, даже фоновые, кроме процессов сессий;
  • -N – выбрать все процессы кроме указанных;
  • – выбирать процессы по имени команды;
  • -G – выбрать процессы по ID группы;
  • -p, (p) – выбрать процессы PID;
  • –ppid – выбрать процессы по PID родительского процесса;
  • -s – выбрать процессы по ID сессии;
  • -t, (t) – выбрать процессы по tty;
  • -u, (U) – выбрать процессы пользователя.
  • – отображать информацию планировщика;
  • -f – вывести максимум доступных данных, например, количество потоков;
  • -j, (j) – вывести процессы в стиле Jobs, минимум информации;
  • -M, (Z) – добавить информацию о безопасности;
  • -o, (o) – позволяет определить свой формат вывода;
  • –sort, (k) – выполнять сортировку по указанной колонке;
  • -L, (H)– отображать потоки процессов в колонках LWP и NLWP;
  • -m, (m) – вывести потоки после процесса;
  • -V, (V) – вывести информацию о версии;
  • -H – отображать дерево процессов linux;

Теперь, когда вы знаете синтаксис и опции, можно перейти ближе к практике и посмотреть запущенные процессы в Linux. Чтобы просто посмотреть процессы в linux в текущей оболочке используйте команду без параметров:

Все процессы, кроме лидеров групп, в том же режиме отображения:

Все процессы, включая фоновые и лидеры групп:

Чтобы вывести больше информации о процессах используйте опцию -f:

При использовании опции -f команда выдает такие колонки:

  • UID – пользователь, от имени которого запущен процесс;
  • PID – идентификатор процесса;
  • PPID – идентификатор родительского процесса;
  • C – процент времени CPU, используемого процессом;
  • STIME – время запуска процесса;
  • TTY – терминал, из которого запущен процесс;
  • TIME – общее время процессора, затраченное на выполнение процессора;
  • CMD– команда запуска процессора;
  • LWP – показывает потоки процессора;
  • PRI – приоритет процесса.

Например, также можно вывести подробную информацию обо всех процессах:

Больше информации можно получить, использовав опцию -F:

Если вы хотите получить еще больше информации, используйте вместо -f опцию -l:

Дальше мы можем отобрать все процессы, запущенные от имени определенного пользователя:

С помощью опции -H можно отобразить дерево процессов:

Если вас интересует информация только об определенном процессе, то вы можете использовать опцию -p и указать pid процесса linux:

Через запятую можно указать несколько PID:

Опция позволяет фильтровать процессы по имени, например, выберем только процессы chrome:

Дальше можно использовать опцию -L чтобы отобразить информацию о процессах:

Очень интересно то, с помощью опции -o можно настроить форматирование вывода, например, вы можете вывести только pid процесса linux и команду:

Вы можете выбрать такие колонки для отображения: pcpu, pmem, args, comm, cputime, pid, gid, lwp, rss, start, user,vsize,priority. Для удобства просмотра можно отсортировать вывод программы по нужной колонке, например, просмотр процессов linux, которые используют больше всего памяти:

Или по проценту загрузки cpu:

ps -FA –sort pcpu

Еще одна опция – M, которая позволяет вывести информацию про права безопасности и флаги SELinux для процессов:

Общее количество запущенных процессов Linux можно узнать командой:

Мы рассмотрели все основные возможности утилиты ps. Дальше вы можете поэкспериментировать с ее параметрами и опциями чтобы найти нужные комбинации, также можно попытаться применить опции BSD.

Выводы

Команда ps может быть очень полезной если система перегружена и вам необходимо срочно узнать запущенные процессы linux чтобы освободить память или ресурсы процессора. Интерактивные средства не всегда могут помочь, потому что они потребляют слишком много ресурсов. С другой стороны ps дает большую гибкость поскольку утилита имеет множество опций и параметров. Во всяком случае теперь вы знаете как вывести список процессов linux. Если остались вопросы, спрашивайте в комментариях!

30 полезных команд «ps» для мониторинга процессов Linux

ps (process state — состояние процессов) — это родная утилита Unix/Linux для просмотра информации о работе запущенных процессов в системе: она считывает эту информацию из виртуальных файлов в файловой системе /proc. Это одна из важных утилит для системного администрирования специально созданная для того, чтобы помочь вам понять, что происходит в системе Linux.

В этой статье мы рассмотрим 30 полезных примеров команды ps для мониторинга активных запущенных процессов в системе Linux.

Обратите внимание, что ps производит вывод с помощью строки заголовка, которая описывает смысл каждого столбца информации, вы можете найти значение всех меток на странице man ps.

Вывод списка всех процессов в текущей оболочке

1. Если вы запускаете команду ps без каких-либо аргументов, она отображает процессы для текущей оболочки.

Вывод всех процессов в разных форматах

2. Отображение каждого активного процесса в системе Linux в общем формате (Unix/Linux).

3. Отобразим все процессы в формате BSD.

4. Чтобы выполнить полноформатный листинг, добавьте флаг -f или -F.

Отображение пользовательских запущенных процессов

5. Вы можете выбрать все процессы, принадлежащие вам (выполните команду ps, как root в этом случае), введите:

6. Чтобы отобразить процессы пользователя с помощью реального идентификатора пользователя (RUID) или его имени, используйте флаг -U.

7. Чтобы выбрать процессы пользователя с помощью эффективного идентификатора пользователя (EUID) или его имени, используйте параметр -u.

Вывод всех процессов, выполняемых как root (Real и Effecitve ID)

8. Приведенная ниже команда позволяет просматривать каждый процесс, выполняющийся с правами пользователя root (реальный и эффективный идентификатор) в пользовательском формате.

Отображение групповых процессов

9. Если вы хотите вывести все процессы, принадлежащие определенной группе (идентификатор реальной группы (RGID или её имя), введите:

10. Чтобы вывести все процессы, принадлежащие эффективному имени группы (или сеанса), введите:

Отобразим процессы по PID и PPID

11. Вы можете перечислить процессы с помощью PID следующим образом.

12. Чтобы выбрать процессы с помощью PPID, введите:

13. Отсортировать, используя список PID.

Процессы отображения TTY

14. Чтобы выбрать процессы с помощью tty, используйте флаг -t следующим образом.

Вывести дерево процессов

15. Дерево процессов показывает, как процессы в системе связаны друг с другом; процессы, родительские процессы которых были завершены, принимаются init (или systemd).

16. Вы также можете вывести дерево процессов для данного процесса, подобного этому:

Вывод потоков процесса

17. Чтобы вывести все потоки процесса, используйте флаг -H, это покажет LWP (легковесный процесс), а также столбцы NLWP (количество легковесных процессов).

Указание формата пользовательского вывода

Используя опции -o или -format, ps позволяет создавать пользовательские форматы вывода, как показано ниже.

18. Чтобы перечислить все спецификаторы формата, пропишите флаг L.

19. Приведенная ниже команда позволяет вам просматривать PID, PPID, имя пользователя и команду процесса.

20. Ниже приведен еще один пример пользовательского формата вывода, показывающего группу файловой системы, приоритет nice, время начала и текущее время выполнения процесса.

21. Чтобы найти имя процесса, используя его PID.

Отображение родительских и дочерних процессов

22. Чтобы выбрать конкретный процесс по его имени, используйте флаг -C, это также отобразит все его дочерние процессы.

23. Найдите PID всех экземпляров процесса, которые полезны при написании скриптов, которые должны считывать PID из выходного файла std.

24. Проверьте время выполнения процесса.

На приведенном ниже рисунке показано, что служба HTTPD работает в течение 1 часа, 48 минут и 17 секунд.

Устранение неполадок производительности системы Linux

Если ваша система работает не так, как должна, например, если она необычно медлительна, вы можете найти некоторые неполадки в системе следующим образом:

27. Чтобы завершить Linux-процессы / неуправляемые приложения, которые потребляют много ресурсов процессора/памяти, выполните следующую команду:

Во-первых, найдите PID соответствующего процесса или приложения.

Затем используйте команду kill, чтобы немедленно завершить его.

Вывод информация о безопасности

28. Выведите контекст безопасности (в частности, для SELinux):

29. Вы также можете отобразить информацию о безопасности в пользовательском формате с помощью этой команды:

Выполнение мониторинга процессов в реальном времени с помощью утилиты Watch

30. Наконец, поскольку ps отображает статическую информацию, вы можете использовать утилиту watch для выполнения мониторинга процессов в реальном времени с выводом данных, отображаемым через каждую секунду, как в приведенной ниже команде.

Важно: ps показывает только статическую информацию, для просмотра часто обновляемого вывода вы можете использовать такие инструменты, как htop; top и glances: последние два — это инструмент мониторинга производительности системы Linux.

Спасибо за уделенное время на прочтение статьи!

Если возникли вопросы, задавайте их в комментариях.

Подписывайтесь на обновления нашего блога и оставайтесь в курсе новостей мира инфокоммуникаций!

Чтобы знать больше и выделяться знаниями среди толпы IT-шников, записывайтесь на курсы Cisco от Академии Cisco, курсы Linux от Linux Professional Institute на платформе SEDICOMM University.

Изучаем процессы в Linux


В этой статье я хотел бы рассказать о том, какой жизненный путь проходят процессы в семействе ОС Linux. В теории и на примерах я рассмотрю как процессы рождаются и умирают, немного расскажу о механике системных вызовов и сигналов.

Данная статья в большей мере рассчитана на новичков в системном программировании и тех, кто просто хочет узнать немного больше о том, как работают процессы в Linux.

Всё написанное ниже справедливо к Debian Linux с ядром 4.15.0.

Содержание

Введение

Системное программное обеспечение взаимодействует с ядром системы посредством специальных функций — системных вызовов. В редких случаях существует альтернативный API, например, procfs или sysfs, выполненные в виде виртуальных файловых систем.

Атрибуты процесса

Процесс в ядре представляется просто как структура с множеством полей (определение структуры можно прочитать здесь).
Но так как статья посвящена системному программированию, а не разработке ядра, то несколько абстрагируемся и просто акцентируем внимание на важных для нас полях процесса:

  • Идентификатор процесса (pid)
  • Открытые файловые дескрипторы (fd)
  • Обработчики сигналов (signal handler)
  • Текущий рабочий каталог (cwd)
  • Переменные окружения (environ)
  • Код возврата

Жизненный цикл процесса

Рождение процесса

Только один процесс в системе рождается особенным способом — init — он порождается непосредственно ядром. Все остальные процессы появляются путём дублирования текущего процесса с помощью системного вызова fork(2) . После выполнения fork(2) получаем два практически идентичных процесса за исключением следующих пунктов:

  1. fork(2) возвращает родителю PID ребёнка, ребёнку возвращается 0;
  2. У ребёнка меняется PPID (Parent Process Id) на PID родителя.

После выполнения fork(2) все ресурсы дочернего процесса — это копия ресурсов родителя. Копировать процесс со всеми выделенными страницами памяти — дело дорогое, поэтому в ядре Linux используется технология Copy-On-Write.
Все страницы памяти родителя помечаются как read-only и становятся доступны и родителю, и ребёнку. Как только один из процессов изменяет данные на определённой странице, эта страница не изменяется, а копируется и изменяется уже копия. Оригинал при этом «отвязывается» от данного процесса. Как только read-only оригинал остаётся «привязанным» к одному процессу, странице вновь назначается статус read-write.

Состояние «готов»

Сразу после выполнения fork(2) переходит в состояние «готов».
Фактически, процесс стоит в очереди и ждёт, когда планировщик (scheduler) в ядре даст процессу выполняться на процессоре.

Состояние «выполняется»

Как только планировщик поставил процесс на выполнение, началось состояние «выполняется». Процесс может выполняться весь предложенный промежуток (квант) времени, а может уступить место другим процессам, воспользовавшись системным вывозом sched_yield .

Перерождение в другую программу

В некоторых программах реализована логика, в которой родительский процесс создает дочерний для решения какой-либо задачи. Ребёнок в данном случае решает какую-то конкретную проблему, а родитель лишь делегирует своим детям задачи. Например, веб-сервер при входящем подключении создаёт ребёнка и передаёт обработку подключения ему.
Однако, если нужно запустить другую программу, то необходимо прибегнуть к системному вызову execve(2) :

или библиотечным вызовам execl(3), execlp(3), execle(3), execv(3), execvp(3), execvpe(3) :

Все из перечисленных вызовов выполняют программу, путь до которой указан в первом аргументе. В случае успеха управление передаётся загруженной программе и в исходную уже не возвращается. При этом у загруженной программы остаются все поля структуры процесса, кроме файловых дескрипторов, помеченных как O_CLOEXEC , они закроются.

Как не путаться во всех этих вызовах и выбирать нужный? Достаточно постичь логику именования:

  • Все вызовы начинаются с exec
  • Пятая буква определяет вид передачи аргументов:
    • l обозначает list, все параметры передаются как arg1, arg2, . NULL
    • v обозначает vector, все параметры передаются в нуль-терминированном массиве;
  • Далее может следовать буква p, которая обозначает path. Если аргумент file начинается с символа, отличного от “/”, то указанный file ищется в каталогах, перечисленных в переменной окружения PATH
  • Последней может быть буква e, обозначающая environ. В таких вызовах последним аргументом идёт нуль-терминированный массив нуль-терминированных строк вида key=value — переменные окружения, которые будут переданы новой программе.

Семейство вызовов exec* позволяет запускать скрипты с правами на исполнение и начинающиеся с последовательности шебанг (#!).

Есть соглашение, которое подразумевает, что argv[0] совпадает с нулевым аргументов для функций семейства exec*. Однако, это можно нарушить.

Любопытный читатель может заметить, что в сигнатуре функции int main(int argc, char* argv[]) есть число — количество аргументов, но в семействе функций exec* ничего такого не передаётся. Почему? Потому что при запуске программы управление передаётся не сразу в main. Перед этим выполняются некоторые действия, определённые glibc, в том числе подсчёт argc.

Состояние «ожидает»

Некоторые системные вызовы могут выполняться долго, например, ввод-вывод. В таких случаях процесс переходит в состояние «ожидает». Как только системный вызов будет выполнен, ядро переведёт процесс в состояние «готов».
В Linux так же существует состояние «ожидает», в котором процесс не реагирует на сигналы прерывания. В этом состоянии процесс становится «неубиваемым», а все пришедшие сигналы встают в очередь до тех пор, пока процесс не выйдет из этого состояния.
Ядро само выбирает, в какое из состояний перевести процесс. Чаще всего в состояние «ожидает (без прерываний)» попадают процессы, которые запрашивают ввод-вывод. Особенно заметно это при использовании удалённого диска (NFS) с не очень быстрым интернетом.

Состояние «остановлен»

В любой момент можно приостановить выполнение процесса, отправив ему сигнал SIGSTOP. Процесс перейдёт в состояние «остановлен» и будет находиться там до тех пор, пока ему не придёт сигнал продолжать работу (SIGCONT) или умереть (SIGKILL). Остальные сигналы будут поставлены в очередь.

Завершение процесса

Ни одна программа не умеет завершаться сама. Они могут лишь попросить систему об этом с помощью системного вызова _exit или быть завершенными системой из-за ошибки. Даже когда возвращаешь число из main() , всё равно неявно вызывается _exit .
Хотя аргумент системного вызова принимает значение типа int, в качестве кода возврата берется лишь младший байт числа.

Состояние «зомби»

Сразу после того, как процесс завершился (неважно, корректно или нет), ядро записывает информацию о том, как завершился процесс и переводит его в состояние «зомби». Иными словами, зомби — это завершившийся процесс, но память о нём всё ещё хранится в ядре.
Более того, это второе состояние, в котором процесс может смело игнорировать сигнал SIGKILL, ведь что мертво не может умереть ещё раз.

Забытье

Код возврата и причина завершения процесса всё ещё хранится в ядре и её нужно оттуда забрать. Для этого можно воспользоваться соответствующими системными вызовами:

Вся информация о завершении процесса влезает в тип данных int. Для получения кода возврата и причины завершения программы используются макросы, описанные в man-странице waitpid(2) .

Передача argv[0] как NULL приводит к падению.

Бывают случаи, при которых родитель завершается раньше, чем ребёнок. В таких случаях родителем ребёнка станет init и он применит вызов wait(2) , когда придёт время.

После того, как родитель забрал информацию о смерти ребёнка, ядро стирает всю информацию о ребёнке, чтобы на его место вскоре пришёл другой процесс.

Благодарности

Спасибо Саше «Al» за редактуру и помощь в оформлении;

Спасибо Саше «Reisse» за понятные ответы на сложные вопросы.

Они стойко перенесли напавшее на меня вдохновение и напавший на них шквал моих вопросов.

Все, что вам нужно знать о процессах в Linux

Оригинал: All You Need To Know About Processes in Linux [Comprehensive Guide]
Автор: Aaron Kili
Дата публикации: 31 марта 2017 года
Перевод: А. Кривошей
Дата перевода: август 2017 г.

В этой статье мы дадим базовое понимание процессов и кратко рассмотрим управление процессами в Linux с помощью специальных команд.
Процесс относится к выполнению программы – он представляет собой запущенный экземпляр программы, составленный из инструкций, данных, считанных из файлов, других программ, или полученных от пользователя.

Типы процессов

В Linux есть два основных типа процессов:

Процессы переднего плана (также известны как интерактивные процессы) – они инициализируются и контролируются в терминальной сессии. Другими словами, для запуска таких процессов в системе должен находиться пользователь, они не запускаются автоматически как часть системных служб.
Фоновые процессы (также известны как неинтерактивные/автоматические процессы) – не подключены к терминалу. Они не ждут ввода от пользователя.

Что такое демоны

Это специальные типы фоновых процессов, которые запускаются при загрузке системы и остаются запущенными в виде служб, они не завершаются. Демоны запускаются как системные задачи, спонтанно. Тем не менее, пользователь может контролировать их через процесс init.

Создание процессов в Linux

Обычно новый процесс создается уже существующим процессом, который делает в памяти свою точную копию. Дочерний процесс получает то же окружение, что и его родительский процесс, отличается только номер ID.

Есть два распространенных способа создания нового процесса в Linux:

1. С помощью функции System(). Этот способ сравнительно прост, однако неэффективен и создает определенные риски с точки зрения безопасности.
2. С помощью функций fork() и exec() – более продвинутая техника с точки зрения гибкости, скорости и безопасности.

Как Linux идентифицирует процессы?

Поскольку Linux – многопользовательская система, и различные пользователи могут одновременно запускать разные программы, каждый запущенный экземпляр программы должен получать уникальный идентификатор от ядра системы.
Программы идентифицируются по ID процесса (PID), а также по ID родительского процесса (PPID), поэтому процессы можно разделить на следующие категории:

Родительские процессы – это процессы, которые в процессе работы создают другие процессы.
Дочерние процессы – это процессы, созданные другими процессами.

Процесс Init

Процесс Init – это родительский процесс для всех процессов в системе, это первая программа, которая исполняется при загрузке системы Linux; он управляет всеми другими процессами в системе. Init запускается непосредственно ядром системы, поэтому он в принципе не имеет родительского процесса.

Процесс Init всегда получает ID 1. Он функционирует как приемный родитель для всех осиротевших процессов.

Для определения ID процесса можно использовать команду pidof:

Найти ID процесса и ID родительского процесса для системной оболочки можно с помощью команд:

Запуск процессов в Linux

При старте команды или программы (например cloudcmd – CloudCommander), она запускает процесс в системе. Вы можете запустить процесс переднего плана (интерактивный), как показано ниже, он подключится к терминалу и пользователь сможет взаимодействовать с ним:

Фоновые процессы в Linux

Для запуска фонового процесса (неинтерактивного) используется символ &, при этом процесс не сможет читать ввод от пользователя, пока не будет перемещен на передний план.

Вы также можете отправить процесс на задний план, приостановив его с помощью [Ctrl + Z], это отправит сигнал SIGSTOP процессу, тем самым прекратив его работу; он простаивает:

Для продолжения выполнения приостановленного в фоне процесса, используется команда bg:

Для перевода процесса из фонового режима на передний план используется команда fg вместе с ID:

Состояние процесса в Linux

В зависимости от различных обстоятельств состояние процесса во время работы может меняться. В Linux процесс может находиться в следующих состояниях:

Running (работа) – процесс работает (он является текущим процессом в системе) или готов к работе (ждет выделения ресурсов процессора).
Waiting (ожидание) – в этом состоянии процесс ждет события, которое должно запустить его, или выделения системных ресурсов.
Кроме того, ядро системы делит процессы в состоянии ожидания на два типа: перываемые процессы, состояние ожидания которых может быть прервано сигналом, и непрерываемые, состояние ожидания которых может быть прервано только аппаратным способом.
Stopped (остановка) – в этом состоянии процесс останавливает работу, обычно после получения соответствующего сигнала. Например, процесс может быть остановлен для отладки.
Zombie (зомби) – процесс мертв, то есть он был остановлен, но в системе осталась выполняемая им задача.

Как просмотреть активные процессы в Linux

В Linux есть несколько утилит для просмотра запущенных в системе процессов, наиболее широко известны команды ps и top:

1. Команда ps

Она выводит информацию о выбранных активных процессах, как показано ниже.

2. top – утилита системного мониторинга

top – это мощная утилита, которая позволяет в режиме реального времени просматривать список запущенных процессов, как показано ниже:

3. glances – утилита системного мониторинга

glances – это сравнительно новая утилита для мониторинга активности системы с продвинутыми возможностями:

Есть также еще несколько полезных программ, которые вы можете использовать для просмотра списка активных процессов, почитать о них можно по ссылкам ниже.

Управление процессами в Linux

В Linux также имеются команды для управления процессами, например kill, pkill, pgrep и killall. Ниже приведено несколько примеров их использования:

Если вы хотите подробно изучить использование этих команд, информация по ссылкам ниже.

Обратите внимание, что с их помощью вы можете завршать зависшие приложения, которые тормозят вашу систему.

Отправка сигналов процессу

Фундаментальный способ управления процессами в Linux – это отправка им сигналов, которых имеется достаточно много. Посмотреть список всех сигналов можно с помощью команды:

Для отправки сигналов процессу используются описанные выше команды kill, pkill или pgrep. Однако программа ответит на сигнал, только если она запрограммирована распознавать такой сигнал.

Большинство сигналов предназначены для использования системой или программистами при написании кода. Следующие сигналы могут быть полезны пользователю:

SIGHUP 1 – отправляется процессу при закрытии контролирующего его терминала.
SIGINT 2 – отправляется процессу контролирующим его терминалом, если пользователь прерывает работу процесса клавишами [Ctrl+C].
SIGQUIT 3 – отправляется процессу, если пользователь посылает сигнал выхода из программы [Ctrl+D].
SIGKILL 9 – этот сигнал немедленно завершает (убивает) процесс без выполнения любых операций очистки файлов, логов и т.д.
SIGTERM 15 – это сигнал завершения работы программы (он по умоланию отправляется командой kill).
SIGTSTP 20 – отправляется процессу контролирующим его терминалом с запросом на остановку (terminal stop); инициируется при нажатии [Ctrl+Z].

Ниже приведены примеры использования команд kill для завершения работы Firefox при его зависании с использованием PID:

Для завершения программы с использованием ее названия используются команды pkill или killall:

Изменение приоритета процесса

В Linux все активные процессы имеют определенное значение приоритета (nice). Процессы с более высоким приоритетом обычно получают больше процессорного времени, чем процессы с более низким приоритетом.

Однако пользователь с привилегиями root может менять приоритет с помощью команд nice и renice.
В выводе команды top столбец NI отображает значения nice для процессов.

Вы можете использовать команду nice, чтобы задать значение nice процесса. Не забывайте, что обычный пользователь может присвоить процессу значение nice от 0 до 20, только если это процесс ему принадлежит.
Отрицательные значения nice может использовать только пользователь root.

Для понижения приоритета процесса используется команда renice:

Другие статьи об управлении процессами в Linux вы найдете на странице “Процессы в Linux-системе”.

Читайте также:  Скрываем время последнего посещения ВКонтакте
Ссылка на основную публикацию
Adblock
detector