Сколько ядер должно быть в смартфоне - TurboComputer.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Сколько ядер должно быть в смартфоне

Сколько ядер должно быть в смартфоне

В чем различия между четырехъядерными и восьмиядерными процессорами смартфонов? Объяснение достаточно простое. В восьмиядерных чипах в два раза больше процессорных ядер, чем в четырехъядерных. На первый взгляд восьмиядерный процессор представляется вдвое более мощным, не так ли? На самом деле ничего подобного не происходит. Чтобы понять, почему восьмиядерность процессора не удваивает производительность смартфона вдвое, потребуются некоторые пояснения. Будущее в сфере процессоров смартфонов уже наступило. Восьмиядерные процессоры, о которых совсем недавно можно было только мечтать, получают все большее распространение. Но, оказывается, их задача состоит не в том, чтобы повысить производительность устройства.

Эти пояснения были опубликованы Йоном Манди (Jon Mundy) в статье «Octa-core vs Quad-core: Does it make a difference?» на страницах ресурса Trusted Reviews.

Четырех- и восьмиядерные процессоры. Производительность

Сами термины «восьмиядерный» и « четырехъядерный» отражают число ядер центрального процессора.

Но ключевое различие между этими двумя типами процессоров — по крайней мере по состоянию на 2015 год — состоит в способе установки процессорных ядер.

В четырехъядерном процессоре все ядра способны работать одновременно, обеспечивая быструю и гибкую многозадачность, делая более ровными 3D-игры и повышая скорость работы камеры, а также осуществляя другие задачи.

Современные восьмиядерные чипы, в свою очередь, просто состоят из двух четырехъядерных процессоров, которые распределяют между собой различные задачи в зависимости от их типа. Чаще всего в восьмиядерном чипе присутствует набор из четырех ядер с более низкой тактовой частотой, чем во втором наборе. Когда требуется выполнить сложную задачу, за нее, разумеется, берется более быстрый процессор.

Более точным термином, чем «восьмиядерный» стал бы «двойной четырехъядерный». Но это звучит не так красиво и не подходит для маркетинговых задач. Поэтому эти процессоры называют восьмиядерными.

Зачем нужны два набора процессорных ядер?

В чем причина сочетания двух наборов процессорных ядер, передающих задачи один другому, в одном устройстве? Для обеспечения энергоэффективности.

Более мощный центральный процессор потребляет больше энергии и батарею приходится чаще заряжать. А аккумуляторные батареи намного более слабое звено смартфона, чем процессоры. В результате — чем более мощен процессор смартфона, тем более емкая батарея ему нужна.

При этом для большинства задач смартфона вам не понадобится столь высокая вычислительная производительность, какую может обеспечить современный процессор. Перемещение между домашними экранами, проверка сообщений и даже веб-навигация — не столь требовательные к ресурсам процессора задачи.

Но HD-видео, игры и работа с фотографиями такими задачами являются. Поэтому восьмиядерные процессоры достаточно практичны, хотя элегантным это решение назвать трудно. Более слабый процессор обрабатывает менее ресурсоемкие задачи. Более мощный — более ресурсоемкие. В итоге сокращается общее энергопотребление по сравнению с той ситуацией, когда обработкой всех задач занимался бы только процессор с высокой тактовой частотой. Таким образом, сдвоенный процессор прежде всего решает задачу повышения энергоэффективности, а не производительности.

Технологические особенности

Все современные восьмиядерные процессоры базируются на архитектуре ARM, так называемой big.LITTLE.

Эта восьмиядерная архитектура big.LITTLE была анонсирована в октябре 2011 года и позволила четырем низкопроизводительным ядрам Cortex-A7 работать совместно с четырьмя высокопроизводительными ядрами Cortex-A15. ARM с тех пор ежегодно повторяла этот подход, предлагая более способные чипы для обоих наборов процессорных ядер восьмиядерного чипа.

Некоторые из основных производителей чипов для мобильных устройств сосредоточили свои усилия на этом образце «восьмиядерности» big.LITTLE. Одним из первых и наиболее примечательных стал собственный чип компании Samsung, известный Exynos. Его восьмиядерная модель использовалась начиная с Samsung Galaxy S4, по крайней мере в некоторых версиях устройств компании.

Сравнительно недавно Qualcomm также начала применение big.LITTLE в своих восьмиядерных чипах Snapdragon 810 CPU. Именно на этом процессоре базируются такие известные новинки рынка смартфонов, как HTC One M9 и G Flex 2, ставший большим достижением компании LG.

В начале 2015 года NVIDIA представила Tegra X1, новый суперпроизводительный мобильный процессор, который компания предназначает для автомобильных компьютеров. Основной функцией X1 является его вызываемый консольно («console-challenging») графический процессор, который также основывается на архитектуре big.LITTLE. То есть он также станет восьмиядерным.

Велика ли разница для обычного пользователя?

Велика ли разница между четырех- и восьмиядерным процессором смартфона для обычного пользователя? Нет, на самом деле она очень мала, считает Йон Манди.

Термин «восьмиядерный» вносит некоторую неясность, но на самом деле он означает дублирование четырехъядерных процессоров. В итоге получаются два работающих независимо четырехъядерных набора, объединенных одним чипом для повышения энергоэффективности.

Нужен ли восьмиядерный процессор в каждом современном смартфоне. Такой необходимости нет, полагает Йон Манди и приводит пример Apple, обеспечивающих достойную энергоэффективность своих iPhone при всего двухъядерном процессоре.

Таким образом, восьмиядерная архитектура ARM big.LITTLE является одним из возможных решений одной из самых важных задач, касающихся смартфонов — времени работы от одной зарядки батареи. По мнению Йона Манди, как только найдется другое решение этой задачи, так и прекратится тренд установки в одном чипе двух четырехъядерных наборов, и подобные решения выйдут из моды.

Знаете ли вы другие преимущества восьмиядерных процессоров смартфонов?

Важно ли количество ядер в процессоре смартфона?

На что обращать внимание при выборе процессора в смартфоне?

Многие покупатели смартфонов стремятся выбрать производительное устройство, хорошо себя показывающее в плане многозадачности или запуске современных игр. Будущие пользователи часто обращают внимание на частоту процессорных ядер. Этот показатель указывается в характеристиках каждого устройства и активно рекламируется производителями. Однако исследования утверждают, что избыточное количество ядер мало влияет на повседневное использование. В большинстве случаев, это маркетинговый ход, привлекающий потенциальных покупателей.

В последнее время значительную популярность заслужили процессоры с 4 и 8 ядрами. Разница межу ними небольшая. Секрет в том, что 8-ядерные чипсеты состоят из двух 4-ядерных процессоров, распределяющих между собой различные задачи. При простых действиях (например, открытия системного меню или запуске камеры) работает процессор с небольшой тактовой частотой. Для требовательных задач (запуска игр и программ) используются вычислительные ресурсы более мощного процессора.

Возникает вопрос — зачем нужен второй кластер ядер, если можно обойтись одним? Во-первых, такое решение привлекает потенциальных покупателей и служит хорошим маркетинговым ходом. Во-вторых, два процессора иногда увеличивают время автономной работы благодаря перераспределению нагрузок.

Выбор оптимального процессора для смартфона

При выборе смартфона с производительным процессором не нужно руководствоваться только количеством ядер. Есть более важные характеристики, например, графический ускоритель. Многие производители оснащают дорогостоящие модели телефоном дополнительным чипом, отвечающим за обработку трехмерной графики. Существует большое разнообразие 3D-ускорителей, изготавливаемых под брендами Adreno и Mali. Большинство чипсетов не ориентированы на тяжелые игры, поэтому нужно уточнять этот момент заранее.

Второй важный показатель — нагрев. Избыточное выделение тепла процессором может спровоцировать появление желтых пятен на поверхности матрицы экрана. Также нагрев отрицательно сказывается на процессорном чипе. Чтобы этого избежать, процессор понижает частоту. Такая особенность называется троттлингом. Иными словами, чем горячее смартфон, тем медленнее он будет работать. Рекомендуется обращать внимание на результаты тестов перед покупкой, а также выбирать устройства с теплопроводящим корпусом.

Третьим фактором производительной работы является оптимизация. Она достигается благодаря совокупности нескольких факторов. Например, объем оперативной памяти неразрывно связан с процессором. Даже мощные чипсеты при малом количестве ОЗУ не способны полностью продемонстрировать свои функциональные возможности. Сегодня оптимальным размером оперативной памяти является 4-6 ГБ. Приобретать смартфоны с ОЗУ меньше 2 ГБ настоятельно не рекомендуется. Нет пока большого смысла в гаджетах с 8 и 10 ГБ ОЗУ — они обычно бесполезны и выведены на рынок только благодаря маркетингу.

Четвертый показатель — бенчмарки. Каждый мобильный процессор проходит синтетическое тестирование в специальных программах для определения вычислительной мощности. Обычно она измеряется в баллах AnTuTu. Чем больший показатель наберет устройство, тем лучший результат заметит пользователь при запуске игр или требовательных приложений. Однако ориентироваться только на цифры не рекомендуется — некоторые производители подтасовывают результаты тестов через специально «обученные» смартфоны.

Читайте также:  Как работает датчик приближения в смартфоне

Наконец, пятый критерий выбора — производитель процессора. Сегодня первенство на рынке устойчиво держат Snapdragon от Qualcomm (вот последний актуальный рейтинг). Они изготавливают чипсеты разного ценового сегмента отличного качества. Также большой популярностью обладают процессоры Exynos, созданные корпорацией Samsung. Они встречаются только в аппаратах южнокорейского производителя. Среди бюджетных моделей широкой известностью обладают чипы от MediaTek, значительно уступающие Snapdragon по параметрам производительности, однако стоящие намного дешевле конкурентов.

Итоги

При выборе смартфона с производительным процессором обращайте внимание на целый комплекс различных факторов — количество ядер, производителя, оптимизацию и результаты бенчмарков. Также уделяйте внимание материалу, из которого изготовлен корпус мобильного устройства. Хорошо подходят алюминиевые или керамические корпуса, обладающие хорошей теплопроводностью. Стеклянные варианты лучше не рассматривать, поскольку в большинстве случаев пользователь сталкивается с избыточным нагревом.

Более подробная статья про важнейшие характеристики смартфонов доступна по этой ссылке. Рекомендуем к прочтению.

Правда или нет: много ядер смартфону не нужно

Использование в смартфонах четырёхъядерных процессоров уже считается едва ли не моветоном: все современные флагманы обязаны иметь минимум восемь ядер, а лучше все десять. Но действительно ли мобильным гаджетам нужны такие чипсеты, или всё дело в маркетинговой гонке между производителями? Мы собираемся сравнить нагрузку на процессор в различных задачах на примере смартфона Honor 8 Pro с чипсетом Kirin 960 и выяснить, действительно ли Android задействует все вычислительные мощности гаджета?

Миф: приложения и игры не используют все ядра мобильного процессора

Чтобы проверить или опровергнуть это утверждение, необходимо получить статистику об использовании каждого процессорного ядра при выполнении гаджетом тех или иных задач. Готовых решений для вывода этой информации мы не нашли, а потому самостоятельно написали пару скриптов. Сначала мы с интервалом в пять секунд считали информацию о загруженности каждого ядра из системного файла /proc/stat. Затем наши инструменты построили графики по полученным данным. Исследование проводилось на смартфоне Honor 8 Pro с восьмиядерным процессором Kirin 960. Этот чипсет состоит из двух кластеров по четыре ядра каждый, причём первый получил ядра ARM Cortex-A53 с тактовой частотой 1,8 ГГц, а второй — Cortex-A73 с частотой 2,4 ГГц.

Режим ожидания. При выключенном экране графики загруженности процессора колеблются около нуля, лишь изредка поднимаясь процентов до десяти из-за wakelock’ов (сотая секунда на графике). Примерно в середине теста смартфон был разблокирован, что повысило активность ядер. Однако в отсутствие задач гаджет не использует больше двух-трёх ядер одновременно.

Загруженность ядер в режиме ожидания

Социальные сети. Использование официального клиента социальной сети «ВКонтакте» оказалось несложной задачей. Загруженность отдельных ядер редко превышала 25%, а четыре ядра из восьми и вовсе находились в «спячке».

Загруженность ядер при использовании клиента социальной сети

Сёрфинг. Больше ресурсов потребовал рендеринг сайтов новостных ресурсов в браузере Chrome — загруженность местами превышала 50%. На графике видно, что в некоторых случаях смартфон активировал сразу восемь ядер, однако основная работа во время тестирования была возложена всего на четыре из них.

Загруженность ядер при сёрфинге

Съёмка видео. Съёмка видео на камеру смартфона в разрешении Ultra HD оказалась довольно ресурсоёмкой задачей, однако для её выполнения аппарату вновь хватило всего четырёх ядер.

Загруженность ядер при съёмке видео

Игры. Тестирование Honor 8 Pro в игре Asphalt Extreme стало показательным: если четыре ядра из восьми оставались загруженными примерно одинаково во время тестирования, то оставшиеся четыре ядра резко активизировали свою работу лишь в некоторых местах, помогая гаджету справиться со сложными сценами.

Загруженность ядер в играх

Бенчмарк AnTuTu. Самым ресурсоёмким из всех оказался, конечно же, бенчмарк AnTuTu: нам даже пришлось отключить сглаживание графика, чтобы его вершины не «уползали» за отметку в 100%. В AnTuTu смартфону пришлось задействовать все восемь ядер, причём в одном из тестов загрузка каждого из них оказалась стопроцентной.

Загруженность ядер в бенчмарке

Почти на всех графиках хорошо заметно, что большую часть времени активна половина ядер гаджета, в то время как вторая половина остаётся незагруженной. Это вполне ожидаемо и соответствует кластерной структуре чипсета Kirin 960. А вот чтобы понять, как смартфону удаётся задействовать все восемь ядер, придётся сначала вспомнить особенности архитектуры ARM big.LITTLE.

Как используются ядра в архитектуре ARM big.LITTLE

На заре появления ARM big.LITTLE об этой архитектуре было много разговоров, но сейчас её использование в чипсетах никак не выделяется. Причина этому проста: буквально каждый второй смартфон и так использует эту технологию, которая, де-факто, стала стандартом в мобильных гаджетах. Выяснить, есть ли в вашем аппарате поддержка big.LITTLE, очень просто — достаточно посмотреть на его технические характеристики. Если в чипсете устройства используются минимум два кластера различных процессорных ядер (или одинаковых, но с разной частотой), значит, он построен на этой архитектуре.

Слева направо: кластерная миграция, процессорная миграция, гетерогенный мультипроцессинг

Архитектура ARM big.LITTLE имеет три типа внутреннего распределения вычислительных ресурсов. Первый — кластерная миграция, при которой одновременно может работать только один кластер, состоящий из процессорных ядер одного типа. Второй — процессорная миграция, где ядра разных типов объединяются попарно, однако в каждой паре в определённый момент времени может работать только одно ядро. Оба этих типа в настоящее время практически не используются, и найти их можно разве что в старых смартфонах. Третий тип, гетерогенный мультипроцессинг, позволяет устройству произвольно задействовать любые ядра, в том числе использовать все доступные ядра одновременно. Именно гетерогенный мультипроцессинг используется в современных смартфонах, включая тестовый Honor 8 Pro, поскольку позволяет гибко задействовать вычислительные ресурсы в зависимости от задач.

Схема чипсета Kirin 960

Но всё-таки зачем смартфону восемь или даже десять ядер, когда обычные ПК прекрасно справляются с рабочими задачами при четырёх? В действительности основная причина использования big.LITTLE — не столько производительность, сколько энергоэффективность. Интенсивность использования каждого процессорного ядра зависит от текущих задач гаджета: если в режиме ожидания смартфону хватит пары энергоэффективных ядер, работающих на низкой частоте, то при запуске ресурсоёмких приложений будут задействованы все ядра. Это позволяет гаджетам лучше экономить драгоценные проценты заряда батареи в простых задачах и работать на полную мощность в играх.

Другие архитектуры

Но как же работают другие варианты многоядерных процессоров? Чтобы ответить на этот вопрос, мы пристально посмотрели ещё на два чипсета. Первый — Qualcomm Snapdragon 801 с четырьмя одинаковыми ядрами Krait 400. В отсутствие кластерной структуры четыре ядра, как правило, работают в унисон, но имеют различную загруженность. Отдельные ядра при этом почти никогда не «спят» — разве что в режиме ожидания в отсутствие фоновых задач.

  • Загрузка однородных ядер в режиме ожидания
  • Загрузка однородных ядер при съёмке видео
  • Загрузка однородных ядер в играх

Второй чипсет, который мы решили протестировать — Mediatek MT6750 с восемью ядрами ARM Cortex-A53, половина из которых работает на максимальной тактовой частоте 1 ГГц, а вторая умеет разгоняться до 1,5 ГГц. В этом SoC уже используется архитектура big.LITTLE, но не гетерогенный мультипроцессинг, а кластерная миграция. Из графиков ниже видно, что в режиме ожидания используются только медленные ядра на 1 ГГц, в то время как в играх и при видеосъёмке активен кластер быстрых ядер. При этом загрузка второго кластера всегда равна нулю, а загруженность ядер активного кластера оказалась примерно одинаковой. Всё это говорит о слабой эффективности работы такой схемы архитектуры big.LITTLE.

  • Загрузка ядер при кластерной миграции big.LITTLE в режиме ожидания
  • Загрузка ядер при кластерной миграции big.LITTLE при съёмке видео
  • Загрузка ядер при кластерной миграции big.LITTLE в играх

Заключение

В большинстве задач смартфону действительно вполне хватает четырёх ядер, но как только гаджет сталкивается с необходимостью увеличить вычислительные ресурсы (например, со сложной сценой в игре или открытием нагруженного сайта) — тут же начинает работу второй кластер. Как оказалось, Android весьма неплохо справляется с задачей распараллеливания процессов: всего одна игра может задействовать сразу восемь ядер со средней загрузкой, вместо того, чтобы загрузить только четыре ядра, но максимально. Такое поведение обеспечивает гибкое управление вычислительными ресурсами системы, бо́льшую энергоэффективность чипсета и меньший нагрев устройства. Так что миф о неоправданности большого количества ядер в смартфоне можно смело считать опровергнутым. Многоядерные процессоры — это не только один из способов увеличения производительности устройства, но и средство экономии заряда аккумулятора, причём не только при простое или использовании социальных сетей, но и в более сложных задачах вроде сёрфинга или игр.

Читайте также:  Что такое телекатушка в смартфоне

Нужна ли многоядерность смартфону?

В начале 2010 г. компания LG анонсировала первый в мире двухъядерный смартфон, что ознаменовало эру мобильной гонки многоядерности. С тех пор прошло уже более 6 лет, а производители только продолжают наращивать производственные и производительные мощности. Сегодня на рынке присутствуют уже десятиядерные предложения и вряд ли на этом их рост остановится. Чтобы лучше понять, чего добиваются производители и как постоянное увеличение количества ядер отражается на приросте производительности, проведем небольшой экскурс в историю.

Некогда устройство для совершения звонков сегодня выполняет роль мультимедийного комбайна, став неотъемлемой частью нашей жизни. С каждым годом появляется новая функциональность, а значит растет потребность обработки всё больших потоков данных. Изначально все усилия для повышения производительности были направлены в сторону наращивания тактовой частоты, но с достижением определенных показателей, её повышение стало нерациональным, так как сказывалось на увеличении TDP процессоров. Впрочем, стараниями разработчиков, а в последующем и маркетологов, был найден выход – многоядерность.

В человеческом сознании укоренилось мнение: «чем больше, тем лучше.» Но всегда есть исключение и вопрос многоядерности один из таких случаев. Эти предубеждения успешно используются «психологами маркетинга», чья задача убедить вас в том, что это главный фактор, влияющий на прирост производительности. А так ли это?

Вопрос количества

Важна ли многоядерность? Несомненно. Обработка, распределение и выполнение множества задач одновременно – вот главная её фишка. Параллельная работа нескольких приложений, видеосъемка и совершение звонков. Звучит странно, но вполне возможно. Возможно благодаря задействованным дополнительным ядрам. И да, я о плавности.

Два процессорных ядра, а это, по сути, два микропроцессора, управятся с различными задачами быстрее одного. Четыре – ещё быстрее, нежели два. Способ увеличения производительности процессора с помощью нескольких ядер заключается в разбивке потоков. Важно отметить, что ОС, несмотря на их количество, умеет создавать и работать с множеством виртуальных потоков, пускай это даже одноядерный вариант. Загрузи вы свой смартфон одной задачей, он отлично с ней справится. Между тем это огромная редкость, ведь даже в режиме пассивного использования он выполняет по несколько задач, для чего в ОС включен планировщик. Планировщик регулирует порядок и количество задач.

А что насчет количества ядер?

Большее количество – не всегда качество. Не все приложения оптимизированы для работы с несколькими ядрами, а уж тем более, когда их численность давно перевалила за четыре. По крайней мере так было раньше, сейчас же ситуация кардинально изменилась. Давайте на примере.

У вас есть несколько грузовых машин. Перевезти ими груз становится гораздо проще, нежели делать это с помощью одной в несколько подходов или полностью загрузив автомобиль. Правда, этот вариант доступен при условии возможности разделения груза. Немаловажным являются и тактовая частота, которая отвечает за обработку различных операций в секундном интервале. Чем она выше, тем больше действий процессор выполняет за один проход. Не стоит забывать и про архитектуру процессора. Вернемся к примеру.

У нас есть два водителя. Несмотря на то, что в смартфонах используется однокристальная система, здесь как и в компьютерных решениях у каждого производителя имеются свои варианты исполнения, отличные от конкурентов. Так вот. У обоих водителей одинаковое задание и место прибытия. Но первый более опытный и знает короткий путь (нет, не как в фильмах с плохой концовкой), соответственно имеет преимущество и доберется гораздо быстрее второго. Не будем тыкать пальцами, но параллель между Qualcomm и MediaTek, думаю, понятна )

Возвращаясь к вопросу оптимизации. В предыдущих своих статьях я не раз отмечал чрезвычайную важность этого фактора и не устаю повторять об этом вновь. Как всегда пример с яблочной продукцией. В последней версии iPhone используется двухъядерный процессор собственной разработки, который занимает лидирующую позицию среди своих более «ядерных» собратьев. Этому способствует множество факторов, но оптимизация стоит во главе.

Проблема перегрева

Прогресс не стоит на месте и на рынке уже давно намечен курс на уменьшение размеров используемых компонентов. Впрочем, в мобильных решениях проблема перегрева остается все ещё актуальной: постоянная прокачка характеристик, включая наращивание мощности становится серьезным барьером при тенденции на стройные смартфоны. В погоне за инновациями некоторые производители оснащают свои устройства жидкостным охлаждением, как например в Z2, Lumia 950 XL и Galaxy S7. Снизить перегрев на высокой частоте возможно также перейдя на более тонкий техпроцесс.

«Количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждые 24 месяца, что приводит к появлению новых технологий, росту производительности и прорывам в области электроники.»

Чем меньше элемент, тем меньше выделение тепла. Однако, с уменьшением размера транзисторов увеличиваются сложности с теплоотводом. Плюс, их размер должен уменьшаться пропорционально (закон Мура), чтобы задержки в ГГц сигналах не сказывались на итоговой производительности. В результате – палка с двумя концами.

Ещё один способ – увеличение количества ядер. Да, вы не ослышались. Система выбирает комбинацию ядер и с потребностью задействует высокопроизводительные, а при возможности сэкономить, пускает в ход энергоэффективные. В редких случаях используются и те, и другие.

Как Andro >Технический писатель и автор собственного блога Дарси Лаковье, провел один интересный эксперимент, создав специальную программу, так как не нашел ни одного приложения, которое использовало бы все восемь ядер на 100%. Потом он затестил несколько приложений на смартфонах с четырехъядерным (Snapdragon 801) восьмиядерным Snapdragon (615) процессорами. В результате Дарси продемонстрировал графики их работы с одинаковыми приложением.

Как и полагается, первым протестировали Chrome. Будь приложение однопоточным, можно было ожидать нагрузки двух ядер с периодической активностью ещё двух других. На самом деле, львиную долю времени браузер использовал все четыре ядра.

Что касается восьмиядерного решения, большую часть времени браузер вел себя довольно непредсказуемо, задействовав произвольное их количество, комбинируя семь-восемь, а иногда шесть или четыре ядер. Учитывая, что 615 использует big.LITTLE-концепцию, способ его работы сильно отличается. На графике видно, как возрастает нагрузка на одном в то время, как падает на другом ядре.

На следующем изображении можно увидеть, как при сильной нагрузке активируется big-кластер, что равноценно задействованию четырех ядер, однако при снижении нагрузки возможно использование двух кластеров одновременно, то есть использование всех восьми ядер. Это нужно во избежание скачков в напряжении, а последующее снижение нагрузки приведет к отключению big и включению энергоэффективного LITTLE-кластера.

Вся статья довольно большая, поэтому я отобрал основные фрагменты для демонстрации и объяснения поведения различных процессоров в определенных ситуациях.

Вывод

Учитывая определенное количество факторов, а именно оптимизацию, разность архитектур, использование различных технологий и некоторых других — многоядерность сегодня не только дань моде, но и один из способов балансировки между огромным количеством насущных проблем.

И в первую очередь, это нужно не столько для наращивания производительности (ведь это вопрос оптимизации), сколько для решения проблем энергоэффективности и перегрева. Но это ли основной выход? Ведь остается ещё масса обходных путей. Например, то же уменьшение техпроцесса. Но и здесь не всё так просто. Ведь манипуляции с минимизацией приводят к большому количеству отбракованных процессоров. Более того, даже небольшие земные колебания, незаметные для простого человека, могут привести количество непригодных процессоров до 70-80%.

Читайте также:  Почему смартфон сам перезагружается часто

Остается система жидкостного охлаждения, но её эффективность в существующем виде, к сожалению, всё ещё под вопросом. Впрочем, производители вряд ли остановятся на этом, ну а на главный вопрос, нужна ли многоядерность? Ответ — да!

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Правда или нет: много ядер смартфону не нужно

Использование в смартфонах четырёхъядерных процессоров уже считается едва ли не моветоном: все современные флагманы обязаны иметь минимум восемь ядер, а лучше все десять. Но действительно ли мобильным гаджетам нужны такие чипсеты, или всё дело в маркетинговой гонке между производителями? Мы собираемся сравнить нагрузку на процессор в различных задачах на примере смартфона Honor 8 Pro с чипсетом Kirin 960 и выяснить, действительно ли Android задействует все вычислительные мощности гаджета?

Миф: приложения и игры не используют все ядра мобильного процессора

Чтобы проверить или опровергнуть это утверждение, необходимо получить статистику об использовании каждого процессорного ядра при выполнении гаджетом тех или иных задач. Готовых решений для вывода этой информации мы не нашли, а потому самостоятельно написали пару скриптов. Сначала мы с интервалом в пять секунд считали информацию о загруженности каждого ядра из системного файла /proc/stat. Затем наши инструменты построили графики по полученным данным. Исследование проводилось на смартфоне Honor 8 Pro с восьмиядерным процессором Kirin 960. Этот чипсет состоит из двух кластеров по четыре ядра каждый, причём первый получил ядра ARM Cortex-A53 с тактовой частотой 1,8 ГГц, а второй — Cortex-A73 с частотой 2,4 ГГц.

Режим ожидания. При выключенном экране графики загруженности процессора колеблются около нуля, лишь изредка поднимаясь процентов до десяти из-за wakelock’ов (сотая секунда на графике). Примерно в середине теста смартфон был разблокирован, что повысило активность ядер. Однако в отсутствие задач гаджет не использует больше двух-трёх ядер одновременно.

Загруженность ядер в режиме ожидания

Социальные сети. Использование официального клиента социальной сети «ВКонтакте» оказалось несложной задачей. Загруженность отдельных ядер редко превышала 25%, а четыре ядра из восьми и вовсе находились в «спячке».

Загруженность ядер при использовании клиента социальной сети

Сёрфинг. Больше ресурсов потребовал рендеринг сайтов новостных ресурсов в браузере Chrome — загруженность местами превышала 50%. На графике видно, что в некоторых случаях смартфон активировал сразу восемь ядер, однако основная работа во время тестирования была возложена всего на четыре из них.

Загруженность ядер при сёрфинге

Съёмка видео. Съёмка видео на камеру смартфона в разрешении Ultra HD оказалась довольно ресурсоёмкой задачей, однако для её выполнения аппарату вновь хватило всего четырёх ядер.

Загруженность ядер при съёмке видео

Игры. Тестирование Honor 8 Pro в игре Asphalt Extreme стало показательным: если четыре ядра из восьми оставались загруженными примерно одинаково во время тестирования, то оставшиеся четыре ядра резко активизировали свою работу лишь в некоторых местах, помогая гаджету справиться со сложными сценами.

Загруженность ядер в играх

Бенчмарк AnTuTu. Самым ресурсоёмким из всех оказался, конечно же, бенчмарк AnTuTu: нам даже пришлось отключить сглаживание графика, чтобы его вершины не «уползали» за отметку в 100%. В AnTuTu смартфону пришлось задействовать все восемь ядер, причём в одном из тестов загрузка каждого из них оказалась стопроцентной.

Загруженность ядер в бенчмарке

Почти на всех графиках хорошо заметно, что большую часть времени активна половина ядер гаджета, в то время как вторая половина остаётся незагруженной. Это вполне ожидаемо и соответствует кластерной структуре чипсета Kirin 960. А вот чтобы понять, как смартфону удаётся задействовать все восемь ядер, придётся сначала вспомнить особенности архитектуры ARM big.LITTLE.

Как используются ядра в архитектуре ARM big.LITTLE

На заре появления ARM big.LITTLE об этой архитектуре было много разговоров, но сейчас её использование в чипсетах никак не выделяется. Причина этому проста: буквально каждый второй смартфон и так использует эту технологию, которая, де-факто, стала стандартом в мобильных гаджетах. Выяснить, есть ли в вашем аппарате поддержка big.LITTLE, очень просто — достаточно посмотреть на его технические характеристики. Если в чипсете устройства используются минимум два кластера различных процессорных ядер (или одинаковых, но с разной частотой), значит, он построен на этой архитектуре.

Слева направо: кластерная миграция, процессорная миграция, гетерогенный мультипроцессинг

Архитектура ARM big.LITTLE имеет три типа внутреннего распределения вычислительных ресурсов. Первый — кластерная миграция, при которой одновременно может работать только один кластер, состоящий из процессорных ядер одного типа. Второй — процессорная миграция, где ядра разных типов объединяются попарно, однако в каждой паре в определённый момент времени может работать только одно ядро. Оба этих типа в настоящее время практически не используются, и найти их можно разве что в старых смартфонах. Третий тип, гетерогенный мультипроцессинг, позволяет устройству произвольно задействовать любые ядра, в том числе использовать все доступные ядра одновременно. Именно гетерогенный мультипроцессинг используется в современных смартфонах, включая тестовый Honor 8 Pro, поскольку позволяет гибко задействовать вычислительные ресурсы в зависимости от задач.

Схема чипсета Kirin 960

Но всё-таки зачем смартфону восемь или даже десять ядер, когда обычные ПК прекрасно справляются с рабочими задачами при четырёх? В действительности основная причина использования big.LITTLE — не столько производительность, сколько энергоэффективность. Интенсивность использования каждого процессорного ядра зависит от текущих задач гаджета: если в режиме ожидания смартфону хватит пары энергоэффективных ядер, работающих на низкой частоте, то при запуске ресурсоёмких приложений будут задействованы все ядра. Это позволяет гаджетам лучше экономить драгоценные проценты заряда батареи в простых задачах и работать на полную мощность в играх.

Другие архитектуры

Но как же работают другие варианты многоядерных процессоров? Чтобы ответить на этот вопрос, мы пристально посмотрели ещё на два чипсета. Первый — Qualcomm Snapdragon 801 с четырьмя одинаковыми ядрами Krait 400. В отсутствие кластерной структуры четыре ядра, как правило, работают в унисон, но имеют различную загруженность. Отдельные ядра при этом почти никогда не «спят» — разве что в режиме ожидания в отсутствие фоновых задач.

  • Загрузка однородных ядер в режиме ожидания
  • Загрузка однородных ядер при съёмке видео
  • Загрузка однородных ядер в играх

Второй чипсет, который мы решили протестировать — Mediatek MT6750 с восемью ядрами ARM Cortex-A53, половина из которых работает на максимальной тактовой частоте 1 ГГц, а вторая умеет разгоняться до 1,5 ГГц. В этом SoC уже используется архитектура big.LITTLE, но не гетерогенный мультипроцессинг, а кластерная миграция. Из графиков ниже видно, что в режиме ожидания используются только медленные ядра на 1 ГГц, в то время как в играх и при видеосъёмке активен кластер быстрых ядер. При этом загрузка второго кластера всегда равна нулю, а загруженность ядер активного кластера оказалась примерно одинаковой. Всё это говорит о слабой эффективности работы такой схемы архитектуры big.LITTLE.

  • Загрузка ядер при кластерной миграции big.LITTLE в режиме ожидания
  • Загрузка ядер при кластерной миграции big.LITTLE при съёмке видео
  • Загрузка ядер при кластерной миграции big.LITTLE в играх

Заключение

В большинстве задач смартфону действительно вполне хватает четырёх ядер, но как только гаджет сталкивается с необходимостью увеличить вычислительные ресурсы (например, со сложной сценой в игре или открытием нагруженного сайта) — тут же начинает работу второй кластер. Как оказалось, Android весьма неплохо справляется с задачей распараллеливания процессов: всего одна игра может задействовать сразу восемь ядер со средней загрузкой, вместо того, чтобы загрузить только четыре ядра, но максимально. Такое поведение обеспечивает гибкое управление вычислительными ресурсами системы, бо́льшую энергоэффективность чипсета и меньший нагрев устройства. Так что миф о неоправданности большого количества ядер в смартфоне можно смело считать опровергнутым. Многоядерные процессоры — это не только один из способов увеличения производительности устройства, но и средство экономии заряда аккумулятора, причём не только при простое или использовании социальных сетей, но и в более сложных задачах вроде сёрфинга или игр.

Ссылка на основную публикацию
Adblock
detector